Skip to main content
Log in

Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Burkholderia xenovorans LB400 multireplicon genome displays a relatively high proportion of redundant genes, including several genes predicted to be related to arsenic resistance. These comprise an ars gene cluster, composed of the arsR3, acr3, arsC1 and arsH genes, as well as two arsB, arsC2, and seven individual arsR genes. The objective of this work was to elucidate the involvement of the ars gene cluster in arsenic resistance by the LB400 strain. Susceptibility tests showed that B. xenovorans LB400 is highly resistant to arsenate and arsenite. Arsenic resistance was induced by prior exposure of LB400 to arsenate or arsenite. reverse transcription-polymerase chain reaction assays using total RNA from LB400 showed arsenite-induced transcription of the arsR3 gene, suggesting that the ars gene cluster constitutes an arsenite-responsive operon. Transfer of cloned LB400 ars genes to heterologous Escherichia coli or Pseudomonas aeruginosa strains demonstrated that the ArsR3 transcriptional repressor, ArsC1 arsenate reductase, and the Acr3 arsenite efflux pump encoded in the LB400 ars gene cluster, are all associated to the arsenic resistance phenotype of this strain.

Graphical Abstract

The ars gene cluster from Burkholderia xenovorans LB400 is responsible for the inducible arsenic-resistance phenotype of the bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achour-Rokbani A, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137

    Article  CAS  Google Scholar 

  • Achour-Rokbani A, Cordi A, Poupin P, Bauda P, Billard P (2010) Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Appl Environ Microbiol 76:948–955

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Navarrete YM, León-Márquez YL, Salinas-Herrera K, Jácome-Galarza IE, Meza-Carmen V, Ramírez-Díaz MI, Cervantes C (2014) Expression of the six chromate ion transporter homologues of Burkholderia xenovorans LB400. Microbiology 160:287–295

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1995) Current protocols in molecular biology. Wiley, New York

    Google Scholar 

  • Branco R, Chung AP, Morais PV (2008) Sequencing and expression of two arsenic resistance operons with different functions in the highly arsenic-resistant strain Ochrobactrum tritici SCII24T. BMC Microbiol 8:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai J, Salmon K, DuBow MS (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144:2705–2713

    Article  CAS  PubMed  Google Scholar 

  • Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol 177:981–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L et al (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103:15280–15287

    Article  PubMed  Google Scholar 

  • Chen J, Bhattacharjee H, Rosen BP (2015) ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol 96:1042–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuebas M, Villafane A, McBride M, Yee N, Bini E (2011) Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology 157:2004–2011

    Article  CAS  PubMed  Google Scholar 

  • Gajiwala KS, Burley SK (2000) Winged helix proteins. Curr Opin Struct Biol 10:110–116

    Article  CAS  PubMed  Google Scholar 

  • Goris J, De Vos P, Caballero-Mellado J, Park J, Falsen E, Quensen JF III, Tiedje JM, Vandame P (2004) Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400 and relatives as Burkholderia xenovorans sp. nov. Int J Syst Microbiol 54:1677–1681

    Article  CAS  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL et al (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2:0007

    Article  PubMed  Google Scholar 

  • Kang YS, Brame K, Jetter J, Bothner BB, Wang G, Thiyagarajan S, McDermott TR (2016) Regulatory activities of four ArsR proteins in Agrobacterium tumefaciens 5A. Appl Environ Microbiol 82:3471–3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Krumholz LR (2007) Regulation of arsenate resistance in Desulfovibrio desulfuricans G20 by an arsRBCC operon and an arsC gene. J Bacteriol 189:3705–3711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LL, Malone JE, Iglewski BH (2007) Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 189:4367–4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang L, Wang G (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. Plos ONE 9:1–11

    Google Scholar 

  • Li J, Pawitwar SS, Rosen BP (2016) The organoarsenical biocycle and the primordial antibiotic methylarsenite. Metallomics 8:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  PubMed  Google Scholar 

  • Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71:6206–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B (2012) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 14:1091–1117

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Gallegos RI, Ramírez-Díaz MI, Cervantes C (2016) chr genes from adaptive replicons are responsible for chromate resistance by Burkholderia xenovorans LB400. Word J Microbiol Biotechnol 32:1–5

    Article  CAS  Google Scholar 

  • Rosen BP, Liu Z (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515

    Article  CAS  PubMed  Google Scholar 

  • West SE, Schweizer HP, Dall C, Sample AK, Runyen-Janecky LJ (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 128:51–56

    Google Scholar 

  • Yang HC, Fu HL, Lin YF, Rosen BP (2012) Pathways of arsenic uptake and efflux. Curr Top Membr 69:325–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanisch-Perron C, Vieira J (1985) Improved M13 phage cloning vectors and host strain: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang Y, Chan A, Chen S, Yang S (2015) Insights into arsenic multi-operons expression and resistance mechanisms in Rhodopseudomonas palustris CGA009. Front Microbiol 6:986

    PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Consejo Nacional de Ciencia y Tecnología, México (Conacyt) [Grant No. 220040], and Coordinación de la Investigación Científica, UMSNH [Grant No. 2.6]. NSG and MGSL were recipients of fellowships from Conacyt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Cervantes.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrato-Gamiño, N., Salgado-Lora, M.G., Chávez-Moctezuma, M.P. et al. Analysis of the ars gene cluster from highly arsenic-resistant Burkholderia xenovorans LB400. World J Microbiol Biotechnol 34, 142 (2018). https://doi.org/10.1007/s11274-018-2526-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-018-2526-4

Keywords

Navigation