Skip to main content
Log in

Heliospheric Lessons for Galactic Cosmic-ray Acceleration

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The heliosphere is bathed in the supersonic solar wind, which generally creates shocks at any obstacles it encounters: magnetic structures such as coronal mass ejections and planetary magnetospheres, or fast-slow stream interactions such as corotating interaction regions (CIRs) or the termination shock. Each of these shock structures has an associated energetic particle population whose spectra and composition contain clues to the acceleration process and the sources of the particles. Over the past several years, the solar wind composition has been systematically studied, and the long-standing gap between high energy (>1 MeV amu−1) and the plasma ion populations has been closed by instruments capable of measuring the suprathermal ion composition. In CIRs, where it has been possible to observe all the relevant populations, it turns out that the suprathermal ion population near 1.8–2.5 times the solar wind speed is the seed population that gets accelerated, not the bulk particles near the solar wind peak. These new results are of interest to the problem of Galactic Cosmic-Ray (GCR) Acceleration, since the injection and acceleration of GCRs to modest energies is likely to share many features with processes we can observe in detail in the heliosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axford, W. I.: 1981, ‘Acceleration of Cosmic Rays by Shock Waves’, Proc. 17th Int. Cosmic Ray Conf., Paris 12, 155-205.

    Google Scholar 

  • Blandford, R. D. and Ostriker, J. P.: 1978, ‘Particle Acceleration by Astrophysical Shocks’, Astrophys. J. 221, L29-L32.

    Google Scholar 

  • Chotoo, K., Schwadron, N. A., Mason, G. M., Zurbuchen, T. H., Gloeckler, G., Posner, A., Fisk, L. A., Galvin, A. B., Hamilton, D. C., and Collier, M. R.: 2000, ‘The Suprathermal Seed Population for CIR Ions at 1 AU Deduced From Composition and Spectra of H+, He++, and He+ Observed on WIND’, J. Geophys. Res., 105, 23 107-23 122.

    Google Scholar 

  • Chupp, E. L.: 1990, ‘Transient Particle Acceleration Associated With Solar Flares’, Science 250, 229-236.

    Google Scholar 

  • Cohen, C. M. S., Cummings, A. C., Leske, R. A., Mewaldt, R. A., Stone, E. C., Dougherty, B. L., Wiedenbeck, M. E., Christian, E. R., and von Rosenvinge, T. T.: 1999, ‘Inferred Charge States of High Energy Solar Particles From the Solar Isotope Spectrometer on ACE’, Geophys. Res. Lett. 26, 149-152.

    Google Scholar 

  • Desai, M. I., Marsden, R. G., Sanderson, T. R., Lario, D., Roelof, E. C., Simnett, G. M., Gosling, J. T., Balogh, A., and Forsyth, R. J.: 1999, ‘Energy Spectra of 50-keV to 20-MeV Protons Accelerated at Corotating Interaction Regions at Ulysses’, J. Geophys. Res. 104, 6 705-6 719.

    Google Scholar 

  • Ellison, D. C.: 1990, ‘Cosmic Ray Source and Cosmic Ray Acceleration’, Proc. 21st Int. Cosmic Ray Conf., Adelaide 11, 133-151.

    Google Scholar 

  • Fisk, L. A. and Lee, M. A.: 1980, ‘Shock Acceleration of Energetic Particles in Corotating Interaction Regions in the Solar Wind’, Astrophys. J. 237, 620-626.

    Google Scholar 

  • Geiss, J., Gloeckler, G., Mall, U., von Steiger, R., Galvin, A. B., and Ogilvie, K. W.: 1994, ‘Interstellar Oxygen, Nitrogen, and Neon in the Heliosphere’, Astron. Astrophys. 282, 924-933.

    Google Scholar 

  • Giacalone, J. and Jokipii, J. R.: 1997, ‘Spatial Variation of Accelerated Pickup Ions at Corotating Interaction Regions’, Geophys. Res. Lett. 24, 1 723-1 726.

    Google Scholar 

  • Gloeckler, G. and Geiss, J.: 1998, ‘Interstellar and Inner Source Pickup Ions Observed With SWICS on Ulysses’, Space Sci. Rev. 86, 127-159.

    Google Scholar 

  • Gloeckler, G., Hovestadt, D., and Fisk, L. A.: 1979, ‘Observed Distribution Functions of H, He, C, O, and Fe in Corotating Energetic Particle Streams: Implications for Interplanetary Acceleration and Propagation’, Astrophys. J. 230, L191-L195.

    Google Scholar 

  • Gloeckler, G., Geiss, J., Roelof, E. C., Fisk, L. A., Ipavich, F. M., Ogilvie, K. W., Lanzerotti, L. J., von Steiger, R., and Wilken, B.: 1994, ‘Acceleration of Interstellar Pickup Ions in the Disturbed Solar Wind Observed on Ulysses’, J. Geophys. Res. 99, 17 637-17 643.

    Google Scholar 

  • Gloeckler, G., Fisk, L. A., Hefti, S., Schwadron, N. A., Zurbuchen, T. H., Ipavich, F. M., Geiss, J., Bochsler, P., and Wimmer-Schweingruber, R. F.: 1999, ‘Unusual Composition of the Solar Wind in the 2–3 May 1998 CME observed with SWICS on ACE’, Geophys. Res. Lett. 26, 157-160.

    Google Scholar 

  • Gloeckler, G., Fisk, L. A., Geiss, J., Schwadron, N. A., and Zurbuchen, T. H.: 2000, ‘Elemental Composition of the Inner Source Pickup Ions’, J. Geophys. Res. 105, 7459-7463.

    Google Scholar 

  • Gosling, J. T.: 1993, ‘The Solar Flare Myth’, J. Geophys. Res. 98, 18 937-18 949.

    Google Scholar 

  • Gosling, J. T., Hundhausen, A. J., and Bame, S. J.: 1976, ‘Solar Wind Stream Evolution at Large Heliocentric Distances: Experimental Determination of the Test of a Model’, J. Geophys. Res. 81, 2 111-2 122.

    Google Scholar 

  • Hilchenbach, M., Grünwaldt, H., Kucharek, H., Klecker, B., Hovestadt, D., Kallenbach, R., Bochsler, P., Gliem, F., Galvin, A. B., Chotoo, K., and Ipavich, F. M.: 1997, ‘Charge State Composition of Energetic Helium as Observed in CIRs at 1 AU With SOHO/CELIAS’, Trans. AGU 78, F554.

    Google Scholar 

  • Hilchenbach, M., Grünwaldt, H., Kallenbach, R., Klecker, B., Kucharek, H., Ipavich, F. M., and Galvin, A. B.: 1999, in S. R. Habbal et al. (eds.), ‘Observation of Suprathermal Helium at 1 AU: Charge States in CIRs’, Solar Wind Nine, American Inst. Physics, New York, pp. 605-608.

    Google Scholar 

  • Holzer, T. E.: 1989, ‘Interaction Between the Solar Wind and the Interstellar Medium’, Ann. Rev. Astron. Astrophys. 27, 199-234.

    Google Scholar 

  • Jokipii, J. R.: 1998, ‘Insights Into Cosmic-ray Acceleration From the Study of Anomalous Cosmic Rays’, Space Sci. Rev. 86, 161-178.

    Google Scholar 

  • Lee, M. A.: 1997, in N. U. Crooker, J. A. Joselyn, and J. Feynman (eds.), ‘Particle Acceleration and Transport at CME-driven Shocks’, Coronal Mass Ejections, AGU Press, pp. 227-234.

  • Lund, N.: 1988, ‘The Abundances in the Cosmic Radiation (the Elements Lighter Than Ge)’, Cosmic Abundances of Matter, AIP Conf. Proc. 183, 111-123.

    Google Scholar 

  • Mason, G. M.: 2000, ‘Composition and Energy Spectra of Ions Accelerated in Corotating Interaction Regions’, in R. A. Mewaldt, E. Möbius, and T. H. Zurbuchen (eds.), ACE-2000, AIP, New York.

    Google Scholar 

  • Mason, G. M., Mazur, J. E., Dwyer, J. R., Reames, D. V., and von Rosenvinge, T. T.: 1997, ‘New Spectral and Abundance Features of Interplanetary Heavy Ions in Corotating Interaction Regions’, Astrophys. J. 486, L149-L152.

    Google Scholar 

  • Mason, G. M. et al.: 1999a, ‘Particle Acceleration and Sources in the November 1997 Solar Energetic Particle Events’, Geophys. Res. Lett. 26, 141-144.

    Google Scholar 

  • Mason, G. M., Mazur, J. E., and Dwyer, J. R.: 1999b, ‘3He Enhancements in Large Solar Energetic Particle Events’, Astrophys. J. 525, L133-L136.

    Google Scholar 

  • Möbius, E., Popecki, M., Klecker, B., Kistler, L. M., Bogdanov, A., Galvin, A. B., Heitzler, D., Hovestadt, D., Lund, E. J., Morris, D., and Schmidt, W. K. H.: 1999, ‘Energy Dependence of the Ionic Charge State Distribution During the November 1997 Solar Energetic Particle Event’, Geophys. Res. Lett. 26, 145-148.

    Google Scholar 

  • Ng, C. K., Reames, D. V., and Tylka, A. J.: 1999, ‘Effect of Proton-amplifiedWaves on the Evolution of Solar Energetic Particle Composition in Gradual Events’, Geophys. Res. Lett. 26, 2145-2148.

    Google Scholar 

  • Ramaty, R. and Murphy, R. J.: 1987, ‘Nuclear Processes and Accelerated Particles in Solar Flares’, Space Sci. Rev. 45, 213-268.

    Google Scholar 

  • Reames, D. V.: 1995, ‘Solar Energetic Particles: A Paradigm Shift’, Rev. Geophys. 33, 585-589.

    Google Scholar 

  • Reames, D. V.: 1999, ‘Particle Acceleration at the Sun and in the Heliosphere’, Space Sci. Rev. 90, 413-491.

    Google Scholar 

  • Reames, D. V., Richardson, I. G., and Barbier, L. M.: 1991, ‘On the Differences in Element Abundances of Energetic Ions From Corotating Events and From Large Solar Events’, Astrophys. J. 382, L43-L46.

    Google Scholar 

  • Reames, D. V., Ng, C. K., Mason, G. M., Dwyer, J. R., Mazur, J. E., and von Rosenvinge, T. T.: 1997, ‘Late-phase Acceleration of Energetic Ions in Corotating Interaction Regions’, Geophys. Res. Lett. 24, 2 917-2 920.

    Google Scholar 

  • Richardson, I. G.: 1985, ‘Low Energy Ions in Corotating Interaction Regions at 1 AU: Evidence for Statistical Ion Acceleration’, Planet. Space Sci. 33, 557-569.

    Google Scholar 

  • Richardson, I. G., Barbier, L. M., Reames, D. V., and von Rosenvinge, T. T.: 1993, ‘Corotating MeV/amu Ion Enhancements at <= 1 AU From 1978 to 1986’, J. Geophys. Res. 98, 13-32.

    Google Scholar 

  • Schlickeiser, R.: 1989, ‘Cosmic-ray Transport and Acceleration, I. Derivation of the Kinetic Equation and Application to Cosmic Rays in a Static Cold Media’, Astrophys. J. 336, 243-263.

    Google Scholar 

  • Shea, M. A. and Smart, D. F.: 1993, in C. E. Swenberg et al. (eds.), ‘History of Energetic Solar Protons for the Past Three Solar Cycles Including Cycle 22 Update’, Biological Effects and Physics of Solar and Galactic Cosmic Radiation, Part B, Plenum Press, New York, pp. 37-71.

    Google Scholar 

  • Schwadron, N. A., Fisk, L. A., and Gloeckler, G.: 1996, ‘Statistical Acceleration of Interstellar Pickup Ions in Corotating Interaction Regions’, Geophys. Res. Lett. 23, 2 871-2 874.

    Google Scholar 

  • Smith, E. J. and Wolfe, J. H.: 1976, ‘Observations of Interaction Regions and Corotating Shocks’, Geophys. Res. Lett. 3, 137-140.

    Google Scholar 

  • Stone, E. C. et al.: 1989, ‘Phase A Study of an Advanced Composition Explorer’, California Institute of Technology.

  • Thomas, G. E.: 1978, ‘The Interstellar Wind and its Influence on the Interplanetary Environment’, Ann. Rev. Earth Planet. Sci. 6, 173-204.

    Google Scholar 

  • Van Hollebeke, M. A. I., Ma Sung, L. S., and McDonald, F. B.: 1975, ‘The Variation of Solar Proton Energy Spectra and Size DistributionWith Heliolongitude’, Solar Phys. 41, 189-223.

    Google Scholar 

  • von Steiger, R., Geiss, J., and Gloeckler, G.: 1997, in J. R. Jokipii, C. P. Sonnet, and M. S. Giampapa (eds.), ‘Composition of the Solar Wind’, Cosmic Winds and the Heliosphere, Univ. of Arizona Press, Tucson, pp. 581-616.

    Google Scholar 

  • Wiedenbeck, M. E. et al.: 1998, ‘Energy Spectra and Relative Abundances of 3He and 4He in Solar Energetic Particle Events’, EOS, Trans. Am. Geophys. Union 79, F719.

    Google Scholar 

  • Wimmer-Schweingruber, R. F., Kern, O., and Hamilton, D. C.: 1999, ‘On the Solar Wind Composition During the November 1997 Solar Particle Events: WIND/MASS Observations’, Geophys. Res. Lett. 26, 3541-3544.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mason, G. Heliospheric Lessons for Galactic Cosmic-ray Acceleration. Space Science Reviews 99, 119–133 (2001). https://doi.org/10.1023/A:1013884729477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013884729477

Keywords

Navigation