Skip to main content
Log in

H9724, a Monoclonal Antibody to Borrelia burgdorferi's Flagellin, Binds to Heat Shock Protein 60 (HSP60) Within Live Neuroblastoma Cells: A Potential Role for HSP60 in Peptide Hormone Signaling and in an Autoimmune Pathogenesis of the Neuropathy of Lyme Disease

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Although Borrelia burgdorferi, the causative agent of Lyme disease, is found at the site of many disease manifestations, local infection may not explain all its features. B. burgdorferi's flagellin cross-reacts with a component of human peripheral nerve axon, previously identified as heat shock protein 60 (HSP60). The cross-reacting epitopes are bound by a monoclonal antibody to B. burgdorferi's flagellin, H9724. Addition of H9724 to neuroblastoma cell cultures blocks in vitro spontaneous and peptide growth-factor–stimulated neuritogenesis. Withdrawal of H9724 allows return to normal growth and differentiation. Using electron microscopy, immunoprecipitation and immunoblotting, and FACS analysis we sought to identify the site of binding of H9724, with the starting hypotheses that the binding was intracellular and not identical to the binding site of II-13, a monoclonal anti-HSP60 antibody. The current studies show that H9724 binds to an intracellular target in cultured cells with negligible, if any, surface binding. We previously showed that sera from patients with neurological manifestations of Lyme disease bound to human axons in a pattern identical to H9724's binding; these same sera also bind to an intracellular neuroblastoma cell target. II-13 binds to a different HSP60 epitope than H9724; II-13 does not modify cellular function in vitro. As predicted, II-13 bound to mitochondria, in a pattern of cellular binding very different from H9724, which bound in a scattered cytoplasmic, nonorganelle-related pattern. H9724's effect is the first evidence that HSP60 may play a role in peptide-hormone–receptor function and demonstrates the modulatory potential of a monoclonal antibody on living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, P.,Blue, M. L.,O'Brien, C., andSchlossman, S. F. (1989). Monoclonal antibodies reactive with the T cell receptor chain: Production and characterization using a new method. J. Immunol. 143: 1899-1904.

    PubMed  Google Scholar 

  • Barbour, A. G.,Hayes, S. F.,Heiland, R. A.,Schrumpf, M. E., andTessier, S. L. (1986). A Borrelia-specific monoclonal antibody to a flagellar epitope. Infect. Immun. 52: 549-554.

    PubMed  Google Scholar 

  • Barbour, A., andSchrumpf, M. (1986). Polymorphisms of major surface proteins of Borrelia burgdorferi. Zbl. Bakt. Hyg. A 263: 83-91.

    Google Scholar 

  • Clevenger, C. V., andShankey, T. V. (1993). Cytochemistry II. Immunofluorescence measurements of intracellular antigens. In Bauer, K. D.,Duque, R. E., andShankey, T. V. (eds.), Clinical Flow Cytometry, Williams and Wilkins, Baltimore, pp. 157-175.

    Google Scholar 

  • Dai, Z. Z. (1993). Definition of the Epitope on the 41-kDa Flagellin of Borrelia burgdorferi for a Monoclonal Antibody H9724 and Identification of a H9724-Reactive ProteinFromCalf Adrenal Gland, PhDThesis, Rutgers University.

  • Dai, Z.,Lackland, H.,Stein, S.,Li, Q.,Radziewicz, R.,Williams, S., andSigal, L. H. (1993). Molecular mimicry in Lyme disease: Monoclonal antibody H9724 to Borrelia burgdorferi flagellin specifically detects chaperonin-HSP60. Biochim. Biophys. Acta 1181: 97-100.

    PubMed  Google Scholar 

  • Duray, P. (1989). Clinical pathologic correlations of Lyme disease. Rev. Infect. Dis. 11: S1487-S1491.

    PubMed  Google Scholar 

  • Ellis, R. J., andvan der Vies, S. M. (1991). Molecular chaperones. Annu. Rev. Biochem. 60: 321-347.

    PubMed  Google Scholar 

  • Fabian, R. (1990). Uptake of antineuronal IgM by CNS neurons: Comparison with antineuronal IgG. Neurology 40: 419-422.

    PubMed  Google Scholar 

  • Fabian, R., andPetroff, G. (1987). Intraneuronal IgG in the central nervous system: Uptake by retrograde axonal transport. Neurology 37: 1780-1784.

    PubMed  Google Scholar 

  • Fitzgerald, M., andKeast, D. (1994) Fab fragments from the monocloanl antibody ML30 bind to treated human myeloid leukemic cells. FASEB J. 8: 259-261.

    PubMed  Google Scholar 

  • Gajdusek, D. (1985). Hypothesis: Interference with axonal transport of neurofilament as a common pathogenic mechanism in certain diseases of the central nervous system. N. Engl. J. Med. 312: 714-719.

    PubMed  Google Scholar 

  • Girouard L.,Jindal, S.,Laux, D. C., andNelson, D. R. (1993). Immune recognition of human HSP60 by Lyme disease sera. Microb. Pathog. 14: 287-297.

    PubMed  Google Scholar 

  • Gorini, G.,Ciotti, M. T.,Starace, G.,Vigneti, E., andRaschella, G. (1992). Fc-gamma receptors are expressed on human neuroblastoma cell lines: Lack of correlation with N-myc oncogene activity. Int. J. Neurosci. 62: 287-297.

    PubMed  Google Scholar 

  • Gupta, R. S., andDudani, A. K. (1987). Mitochondrial binding of a protein affected in a mutant resistant to the microtubule inhibitor podophyllotoxin. Eur. J. Cell Biol. 44: 278-285.

    PubMed  Google Scholar 

  • Halperin, J. J.,Little, B.W.,Coyle, P. K., andDattwyler, R. D. (1987). Lyme disease: Cause of a treatable peripheral neuropathy. Neurology 37: 1700-1706.

    PubMed  Google Scholar 

  • Jacob, M. C.,Favre, M., andBensa, J.-C. (1991). Membrane cell permeabilization with saponin and multiparametric analysis by flow cytometry. Cytometry 12: 550-558.

    PubMed  Google Scholar 

  • Jarjour W.,Jeffries, B. D.,Davis, J. S., IV,Welch, W. J.,Mimura, T., andWinfield, J. B. (1991). Autoantibodies to human stress proteins. A survey of various rheumatic and other inflammatory diseases. Arthritis Rheum. 34: 1133-1138.

    PubMed  Google Scholar 

  • Lahesmaa R.,Shanafelt, M.-C.,Allsup, A.,Soderberg, C.,Anzola, J.,Freitas, V.,Turck, C.,Steinman, L., andPeltz, G. (1993). Preferential usage of T cell antigen receptor V region gene segment Vbeta5.1 by Borrelia burgdorferi antigen-reactive T cell clones isolated from a patient with Lyme disease. J. Immunol. 150: 4125-4135.

    PubMed  Google Scholar 

  • Levine, B.,Hardwick, J. M.,Trapp, B. D.,Crawford, T. O.,Bollinger, R. C., andGriffin, D. E. (1991). Antibody-mediated clearance of alphavirus infection from neurons. Science 254: 856-860.

    PubMed  Google Scholar 

  • Madaio, M. P.,Fabbi, M.,Tiso, M.,Daga, A., andPuccetti, A. (1996). Spontaneously produced anti-DNA/DNase I autoantibodies modulate nuclear apoptosis in living cells. Eur. J. Immunol. 26: 3035-3041.

    PubMed  Google Scholar 

  • Maimone, D.,Villanova, M.,Stanta, G.,Bonin, S.,Malandrini, A.,Guazzi, G. C., andAnnunziata, P. (1997). Detection of Borrelia burgdorferi DNA and complement attack complex depostis in the sural nerve of a patient with chronic polyneuropathy and tertiary Lyme disease. Muscle Nerve 20: 969-975.

    PubMed  Google Scholar 

  • Nakafuku, M.,Satoh, T., andKaziro, Y. (1992). Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce accumulation of an active Ras*GTP complex in rat pheochromocytoma PC12 cells. J. Biol. Chem. 267: 19448-19454.

    PubMed  Google Scholar 

  • Okudaira, K.,Hisayoshi, Y., andWilliams, R. C. (1987). Monoclonal anti-DNA antibody interacts with living mononuclear cells. Arthritis Rheum. 30: 669-674.

    PubMed  Google Scholar 

  • Ross, R. A.,Spengler, B. A., andBiedler, J. L. (1983). Coordinate morphological and biochemical interconversion of human neuroblastoma cells. Journal of the National Cancer Institute (JNCI) 71: 741-749.

    Google Scholar 

  • Schmid, I., andGiorgi, J. V. (1998). Immunofluorescence and cell sorting: Immunofluorescence staining of unfixed cells for detection of intracellular antigens. In Coligan, J. E.,Kruisbeek, A. M.,Margulies, D. H.,Shevach, E. M., andStrober, W. (eds.), Current Protocols in Immunology, Wiley, New York, Vol. I, Ch. 5, pp. 5.3.9-5.3.10.

    Google Scholar 

  • Shanafelt, M.-C.,Hindersson, P.,Soderberg, C.,Mensi, N.,Turck, C. W.,Webb, D.,Yssel, H., andPeltz, G. (1991). T cell and antibody reactivity with the Borrelia burgdorferi 60-kDa heat shock protein in Lyme arthritis. J. Immunol. 146: 3985-3992.

    PubMed  Google Scholar 

  • Sigal, L. H. (1989). Lyme disease, 1988: Immunologic manifestations and possible immunopathogenic mechanisms. Semin. Arthritis Rheum. 18: 151-167.

    PubMed  Google Scholar 

  • Sigal, L. H. (1993). The flagellin of Borrelia burgdorferi, the causative agent of Lyme disease, cross-reacts with a human axonal 64,000 molecular weight protein. J. Infect. Dis. 167: 1372-1378.

    PubMed  Google Scholar 

  • Sigal, L. (1997). The immunology and potential mechanisms of immunopathogenesis of Lyme disease. Annu. Rev. Immunol. 15: 63-92.

    PubMed  Google Scholar 

  • Sigal, L. H., andTatum, A. (1988). Lyme disease patients' serum contains IgM antibodies to Borrelia burgdorferi that cross-react with neuronal antigens. Neurology 38: 1439-1442.

    PubMed  Google Scholar 

  • Sigal, L. H., andWilliams, S. (1997). A monoclonal antibody to Borrelia burgdorferi's flagellin modifies neuroblastoma cell neuritogenesis in vitro: A possible role for auto-immunity in the neuropathy of Lyme disease. Infect. Immun. 65: 1722-1778.

    PubMed  Google Scholar 

  • Singh, B., andGupta, R. S. (1992). Expression of human 60 kDa heat shock protein (Hsp60 or P1) in Escherichia coli and the development and characterization of corresponding monoclonal antibodies. DNA Cell Biol. 11: 489-496.

    PubMed  Google Scholar 

  • Soltys, B.,Falah, M., andGupta, R. S. (1996). Identification of endoplasmic reticulum in the primitive eukaryote Giardia lamblia using cryoelectron microscopy and antibody to Bip. J. Cell Sci. 109: 1909-1917.

    PubMed  Google Scholar 

  • Soltys, B., andGupta, R. S. (1996). Immunoelectron microscopic localization of the 60-kDA heat shock chaperonin protein (hsp60) in mammalian cells. Exp. Cell Res. 222: 16-22.

    PubMed  Google Scholar 

  • Steere, A. (2001). Lyme disease. N. Engl. J. Med. 345: 115-125.

    PubMed  Google Scholar 

  • Tokuyasu, K. (1986). Applications of cryoultramicrotomy to immunocytochemistry. J. Microsc. 143: 139-149.

    PubMed  Google Scholar 

  • Yanase, K.,Smith, R. H.,Cizman, B.,Foster, M. H.,Peachey, L. D.,Jaret, L., andMadaio, M. P. (1994). A subgroup of murine monoclonal anti-deoxyribonucleic acid antibodies traverse the cytoplasm and enter the nucleus in a time-and temperature-dependent manner. Lab. Invest. 71: 52-60.

    PubMed  Google Scholar 

  • Yu Z.,Tu, J., andChu, Y.-H. (1997). Confirmation of cross-reactivity between Lyme antibody H9724 and human heat shock protein 60 by a combinatorial approach. Anal. Chem. 69: 4515-4518.

    PubMed  Google Scholar 

  • Zack, D. J.,Stempniak, M.,Wong, A. L.,Taylor, C., andWeisbart, R. H. (1996). Mechanisms of cellular penetration and nuclear localization of an anti-double strand DNA auto antibody. J. Immunol. 157: 2082-2088.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigal, L.H., Williams, S., Soltys, B. et al. H9724, a Monoclonal Antibody to Borrelia burgdorferi's Flagellin, Binds to Heat Shock Protein 60 (HSP60) Within Live Neuroblastoma Cells: A Potential Role for HSP60 in Peptide Hormone Signaling and in an Autoimmune Pathogenesis of the Neuropathy of Lyme Disease. Cell Mol Neurobiol 21, 477–495 (2001). https://doi.org/10.1023/A:1013815322485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013815322485

Navigation