Skip to main content
Log in

Polymorphism of drug metabolizing enzymes in humans

  • Published:
Sepsis

Abstract

The cytochrome P450 (P450 or CYP) monooxygenases, CYP2D6, CYP2C19 and CYP2C9, display polymorphism. CYP2D6 and CYP2C19 have been studied extensively and, despite their low abundance in the liver, they have been found to catalyze the metabolism of many drugs. CYP2D6 has many allelic variants, whereas CYP2C19 has only seven. Most variants are translated into inactive, truncated proteins or fail to express any protein. There is, as yet, no clear information about the other CYPs (CYP1A1, CYP2A6, CYP2B6, CYP2E1 and CYP3A4/5) polymorphism.

When two drugs that are substrates of a polymorphic CYP enzyme are administered concomitantly during drug therapy, each will compete for that enzyme and competitively inhibit the metabolism of the other. This can result in toxicity. Patients who are poor metabolizers (PMs), extensive metabolizers (EMs), and ultrarapid metabolizers (URMs) can be identified. Having such information will help in determining the appropriate dosage of certain drugs when treating patients with an inherited abnormality of a drug-metabolizing enzyme.

The pharmacokinetics of many drugs often exhibit considerable inter-individual variability, largely because of variations in the expression of different CYP enzymes in the liver and other tissues. Relatively selective in vivo substrate probes have been discovered for several major CYP isoforms involved in oxidative drug metabolism.

In view of the remarkable progress in this particular field, it is to be expected that more genetic polymorphisms will be reported with the discovery of more and more new drugs in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993;12:1–51.

    Google Scholar 

  2. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, et al. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 1991;10:1–14.

    Google Scholar 

  3. Shimada T, Yamazaki H, Mimura M, Inui Y, Guengerich FP. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994;270: 414–423.

    Google Scholar 

  4. Inoue K, Yamazaki H, Imiya K, Akasaka S, Guengerich FP, Shimada T. Relationship between CYP2C9 and 2C19 genotypes and tolbutamide methyl hydroxylation and Smephenytoin 4'-hydroxylation activities in livers of Japanese and Caucasian populations. Pharmacogenetics 1997;7: 103–113.

    Google Scholar 

  5. Nakamura K, Goto F, Ray WA, McAllister CB, Jacqz E, Wilkinson GR, Branch RA. Interethinic defferences in genetic polymorphism od debrisoquin and mepheytoin hydroxylation between Japanease and Caucasian population. Clin Pharmacol Ther 1985;38:402–408.

    Google Scholar 

  6. Wilkinson GR, Guengerich FP, Branch RA. Genetic polymorphism of S-mepheytoin hydroxylation. Pharmacol Ther 1989;43:53–76.

    Google Scholar 

  7. Bertilsson L, Lou YQ, Du YL, Lin Y, Kuang TY, Liao XM, Wang KY, Reviriego J, Iselius L, Sjoqvist F. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and S-mepheytoin. Clin Paharmacol Ther 1992;51:388–397.

    Google Scholar 

  8. Wrighton SA, Stevens JC, Becker GW, Vanden-Branden. Isolation and characterization of human liver cytochrome P4502C19: correlation between 2C19 and S-mepheytoin hydrpxylation. Arch Biochem Biophys 1993;306:240–245.

    Google Scholar 

  9. Mehgoub A, Dring LG, Idle JR, Lancaster R, Smith RL. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977;2:584–586.

    Google Scholar 

  10. Eichelbaum M, Spannbrucker N, Steincke B, Dengler HJ. Defective N-oxidation of sparteine in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 1979;16:183–187.

    Google Scholar 

  11. Brø sen K, Gram LF. Clinical significance of the sparteine/ debrisoquine oxidation polymorphism. Eur J Clin Pharmacol 1989;36:537–547.

    Google Scholar 

  12. Meyer UA, Skoda RC, Zanger UM. The genetic polymorphism of debrisoquine/sparteine metabolism: molecular mechanisms. Pharmacol Ther 1990;46:297–308.

    Google Scholar 

  13. Eichelbaum M, Gross AS. The genetic polymorphism of debrisoquine/ sparteine metabolism: clinical aspects. Pharmacol Ther 1990;46:377–394.

    Google Scholar 

  14. Lennard MS. Genetic polymorphism of sparteine/debrisoquine oxidation: a reappraisal. Pharmacol Toxicol 1990;67: 273–283.

    Google Scholar 

  15. Gonzalez FK, Meyer UA. Molecular genetics of the debrisoquine/ sparteine metabolism. Clin Pharmacol Ther 1991;50: 233–238.

    Google Scholar 

  16. Tanaka E. Update: genetic polymorphism of drug metabolizing enzymes in humans. J Clin Pharm Ther 1999;24: 323–330.

    Google Scholar 

  17. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995;29:192–209.

    Google Scholar 

  18. van der Weide J, Steijns LS. Cytochrome P450 enzyme system: genetic polymorphisms and impact on clinical pharmacology. Ann Clin Biochem 1999;36(Pt 6):722–729.

    Google Scholar 

  19. Coutts RT, Urichuk LJ. Polymorphic cytochromes P450 and drugs used in psychiatry. Cell Mol Neurobiol 1999;19: 325–354.

    Google Scholar 

  20. Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, Lasker JM, Ghanayem BI. Evidence that CYP2C19 is the major (S)-mephenytoin 4'-hydroxylase in humans. Biochemistry 1994;33:1743–1752.

    Google Scholar 

  21. Goldstein JA, de Morais SM. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994;4:285–299.

    Google Scholar 

  22. Alvan G, Bechtel P, Iselius L, Gundert-Remy U. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol 1990;39: 533–537.

    Google Scholar 

  23. Bertilsson L, Lou YQ, Du YL, Liu Y, Kuang TY, Liao XM, Wang KY, Reviriego J, Iselius L, Sjoqvist Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of debrisoquin and Smephenytoin. Clin Pharmacol Ther 1992;51:388–397.

    Google Scholar 

  24. Jurima M, Inaba T, Kadar D, Kalow W. Genetic polymorphism of mephenytoin p(4')-hydroxylation: difference between Orientals and Caucasians. Br J Clin Pharmacol 1985; 19:483–487.

    Google Scholar 

  25. Xiao ZS, Goldstein JA, Xie HG, Blaisdell J, Wang W, Jiang CH, Yan FX, He N, Huang SL, Xu ZH, Zhou HH. Differences in the incidence of the CYP2C19 polymorphism affecting the S-mephenytoin phenotype in Chinese Han and Bai populations and identification of a new rare CYP2C19 mutant allele. J Pharmacol Exp Ther 1997;281:604–609.

    Google Scholar 

  26. de Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994;269:15419–15422.

    Google Scholar 

  27. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 1994;46:594–598.

    Google Scholar 

  28. Ferguson RJ, De Morais SM, Benhamou S, Bouchardy C, Blaisdell J, Ibeanu G, Wilkinson GR, Sarich TC, Wright JM, Dayer P, Goldstein JA. A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther 1998;284:356–361.

    Google Scholar 

  29. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994;4:39–42.

    Google Scholar 

  30. Haining RL, Hunter AP, Veronese ME, Trager WF, Rettie AE. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996;333:447–458.

    Google Scholar 

  31. Kimura M, Ieiri I, Mamiya K, Urae A, Higuchi S. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit 1998;20:243–247.

    Google Scholar 

  32. Mamiya K, Ieiri I, Shimamoto J, Yukawa E, Imai J, Ninomiya H, Yamada H, Otsubo K, Higuchi S, Tashiro N. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 1998;39:1317–1323.

    Google Scholar 

  33. Bertilsson L, Dahl ML, Sjoqvist F, Aberg-Wistedt A, Humble M, Johansson I, Lundqvist E, Ingelman-Sundberg M. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993;341:63.

    Google Scholar 

  34. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, Ingelman-Sundberg M. Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993;90:11825–11829.

    Google Scholar 

  35. Evans DA, Mahgoub A, Sloan TP, Idle JR, Smith RL. A family and population study of the genetic polymorphism of debrisoquine oxidation in a white British population. J Med Genet 1980;17:102–105.

    Google Scholar 

  36. Johansson I, Yue QY, Dahl ML, Heim M, Sawe J, Bertilsson L, Meyer UA, Sjoqvist F, Ingelman-Sundberg M. Genetic analysis of the interethnic difference between Chinese and Caucasians in the polymorphic metabolism of debrisoquine and codeine. Eur J Clin Pharmacol 1991;40:553–556.

    Google Scholar 

  37. Guengerich FP. Characterization of human microsomal cytochrome P-450 enzymes. Ann Rev Pharmacol Toxicol 1989;29:241–246.

    Google Scholar 

  38. Gonzalez FJ, Gelboin HV. Human cytochrome P450: evolution, catalytic activities and interindividual variations in expretion. Prog Clin Biol Res 1991;372:11–20.

    Google Scholar 

  39. Yamano S, Tatsuno J, Gonzalez FJ. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry 1990;29:1322–1329.

    Google Scholar 

  40. Fernandez-Salguero P, Hoffman SM, Cholerton S, Mohrenweiser H, Raunio H, Rautio A, Pelkonen O, Huang JD, Evans WE, Idle JR, et al. A genetic polymorphism in coumarin 7-hydroxylation: sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am J Hum Genet 1995;57:651–660.

    Google Scholar 

  41. Tanaka E, Terada M, Misawa S. Cytochrome P450 2E1: its clinical and toxicological role. J Clin Pharm Ther 2000;25: 165–176.

    Google Scholar 

  42. Carriere V, Berthou F, Baird S, Belloc C, Beaune P, de Waziers I. Human cytochrome P450 2E1 (CYP2E1): from genotype to phenotype. Pharmacogenetics 1996;6:203–211.

    Google Scholar 

  43. Powell H, Kitteringham NR, Pirmohamed M, Smith DA, Park BK. Expression of cytochrome P4502E1 in human liver: assessment by mRNA, genotype and phenotype. Pharmacogenetics 1998;8:411–421.

    Google Scholar 

  44. McCarver DG, Byun R, Hines RN, Hichme M, Wegenek W. A genetic polymorphism in the regulatory sequences of human CYP2E1: association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake. Toxicol Appl Pharmacol 1998;152:276–281.

    Google Scholar 

  45. Lucas D, Ferrara R, Gonzalez E, Bodenez P, Albores A, Manno M, Berthou F. Chlorzoxazone, a selective probe for phenotyping CYP2E1 in humans. Pharmacogenetics 1999; 9:377–388.

    Google Scholar 

  46. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999;37:485–505.

    Google Scholar 

  47. Ozdemir V, Kalowa W, Tang BK, Paterson AD, Walker SE, Endrenyi L, Kashuba AD. Evaluation of the genetic component of variability in CYP3A4 activity: a repeated drug administration method. Pharmacogenetics 2000;10:373–388.

    Google Scholar 

  48. Kolars JC, Lown KS, Schmiedlin-Ren P, Ghosh M, Fang C, Wrighton SA, Merion RM, Watkins PB. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994;4:247–259.

    Google Scholar 

  49. Lown KS, Kolars JC, Thummel KE, Barnett JL, Kunze KL, Wrighton SA, Watkins PB. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metab Dispos 1994;22:947–955.

    Google Scholar 

  50. Daly AK, Salh BS, Bilton D, Allen J, Knight AD, Webb AK, Braganza JM, Idle JR. Deficient nifedipine oxidation: a rare inherited trait associated with cystic fibrosis kindreds. Pharmacogenetics 1992;2:19–24.

    Google Scholar 

  51. Lin JH, Lu AY. Inhibition and induction of cytochrome P450 and the clinical implications. Clin Pharmacokinet 1998;35: 361–390.

    Google Scholar 

  52. Tanaka E. Clinically important pharmacokinetic drug- drug interactions: role of cytochrome P450 enzymes. J Clin Pharm Ther 1998;23:403–416.

    Google Scholar 

  53. Murray M. Induction and inhibition of CYPs and implications for medicine. Mol Aspects Med 1999;20:24–33,34- 137.

    Google Scholar 

  54. Pelkonen O, Maenpaa J, Taavitsainen P, Rautio A, Raunio H. Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica 1998;28:1203–1253.

    Google Scholar 

  55. Vanden Bossche H, Koymans L, Moereels H. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol Ther 1995;67:79–100.

    Google Scholar 

  56. Murray M. Drug-mediated inactivation of cytochrome P450. Clin Exp Pharmacol Physiol 1997;24:465–470.

    Google Scholar 

  57. Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Effects of the antifungal agents on oxidative drug metabolism: clinical relevance. Clin Pharmacokinet 2000;38:111–180.

    Google Scholar 

  58. Park BK, Kitteringham NR, Pirmohamed M, Tucker GT. Relevance of induction of human drug-metabolizing enzymes: pharmacological and toxicological implications. Br J Clin Pharmacol 1996;41:477–491.

    Google Scholar 

  59. Fuhr U. Induction of drug metabolising enzymes: pharmacokinetic and toxicological consequences in humans. Clin Pharmacokinet 2000;38:493–504.

    Google Scholar 

  60. Venkatesan K. Pharmacokinetic drug interactions with rifampicin. Clin Pharmacokinet 1992;22:47–65.

    Google Scholar 

  61. Lee KH, Shin JG, Chong WS, Kim S, Lee JS, Jang IJ, Shin SG. Time course of the changes in prednisolone pharmacokinetics after co-administration or discontinuation of rifampin. Eur J Clin Pharmacol 1993;45:287–289.

    Google Scholar 

  62. Burger DM, Meenhorst PL, Koks CH, Beijnen JH. Pharmacokinetic interaction between rifampin and zidovudine. Antimicrob Agents Chemother 1993;37:1426–1431.

    Google Scholar 

  63. Grange JM, Winstanley PA, Davies PD. Clinically significant drug interactions with antituberculosis agents. Drug Saf 1994;11:242–251.

    Google Scholar 

  64. Fromm MF, Busse D, Kroemer HK, Eichelbaum M. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1997;24:796–801.

    Google Scholar 

  65. Rambeck B, Specht U, Wolf P. Pharmacokinetic interactions of the new antiepileptic drugs. Clin Pharmacokinet 1996;31:309–324.

    Google Scholar 

  66. Backman JT, Olkkola KT, Ojala M, Laaksovirta H, Neuvonen PJ. Concentrations and effects of oral midazolam are greatly reduced in patients treated with carbamazepine or phenytoin. Epilepsia 1996;37:253–257.

    Google Scholar 

  67. Jusko WJ. Role of tobacco smoking in pharmacokinetics. J Pharmacokinet Biopharm 1978;6:7–39.

    Google Scholar 

  68. Schein JR. Cigarette smoking and clinically significant drug interactions. Ann Pharmacother 1995;29:1139–1148.

    Google Scholar 

  69. Morel F, Beaune PH, Ratanasavanh D, Flinois JP, Yang CS, Guengerich FP, G uillouzo A. Expression of cytochrome P450 enzymes in cultured human hepatocytes. Eur J Biochem 1990;191:437–444.

    Google Scholar 

  70. Perrot N, Nalpas B, Yang CS, Beaune PH. Modulation of cytochrome P450 isozymes in human liver, by ethanol and drug intake. Eur J Clin Invest 1989;19:549–555.

    Google Scholar 

  71. Kim RB, O'Shea D, Wilkinson GR. Relationship in healthy subjects between CYP2E1 genetic polymorphisms and the 6-hydroxylation of chlorzoxazone: a putative measure of CYP2E1 activity. Pharmacogenetics 1994;4:162–165.

    Google Scholar 

  72. Kivisto KT, Kroemer HK. Use of probe drugs as predictors of drug metabolism in humans. J Clin Pharmacol 1997;37:40S–48S.

    Google Scholar 

  73. Streetman DS, Bertino JS Jr, Nafziger AN. Phenotyping of drug-metabolizing enzymes in adults: a review of in-vivo cytochrome P450 phenotyping probes. Pharmacogenetics 2000;10:187–216.

    Google Scholar 

  74. Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics 1994;4:109–116.

    Google Scholar 

  75. Inaba T. Phenytoin: pharmacogenetic polymorphism of 4´-hydroxylation. Pharmacol Ther 1990;46:341–347.

    Google Scholar 

  76. Veronese ME, Miners JO, Rees DL, Birkett DJ. Tolbutamide hydroxylation in humans: lack of bimodality in 106 healthy subjects. Pharmacogenetics 1993;3:86–93.

    Google Scholar 

  77. Wedlund PJ, Aslanian WS, McAllister CB, Wilkinson GR, Branch RA. Mephenytoin hydroxylation deficiency in Caucasians: frequency of a new oxidative drug metabolism polymorphism. Clin Pharmacol Ther 1984;36:773–780.

    Google Scholar 

  78. Wedlund PJ, Sweetman BJ, Wilkinson GR, Branch RA. Pharmacogenetic association between the formation of 4-hydroxymephenytoin and a new metabolite of S-mephenytoin in man. Drug Metab Dispos 1987;15:277–279.

    Google Scholar 

  79. Balian JD, Sukhova N, Harris JW, Hewett J, Pickle L, Goldstein JA, Woosley RL, Flockhart DA. The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a population study. Clin Pharmacol Ther 1995;57:662–669.

    Google Scholar 

  80. Chang M, Dahl ML, Tybring G, Gotharson E, Bertilsson L. Use of omeprazole as a probe drug for CYP2C19 phenotype in Swedish Caucasians: comparison with S-mephenytoin hydroxylation phenotype and CYP2C19 genotype. Pharmacogenetics 1995;5:358–363.

    Google Scholar 

  81. Rodrigues AD, Kukulka MJ, Surber BW, Thomas SB, Uchic JT, Rotert GA, Michel G, Thome-Kromer B, Machinist JM. Measurement of liver microsomal cytochrome p450 (CYP2D6) activity using [O-methyl-14C]dextromethorphan. Anal Biochem 1994;219:309–320.

    Google Scholar 

  82. Sloan TP, Lancaster R, Shah RR, Idle JR, Smith RL. Genetically determined oxidation capacity and the disposition of debrisoquine. Br J Clin Pharmacol 1983;15:443–450.

    Google Scholar 

  83. Eichelbaum M, Spannbrucker N, Dengler HJ. Influence of the defective metabolism of sparteine on its pharmacokinetics. Eur J Clin Pharmacol 1979;16:189–194.

    Google Scholar 

  84. Girre C, Lucas D, Hispard E, Menez C, Dally S, Menez JF. Assessment of cytochrome P4502E1 induction in alcoholic patients by chlorzoxazone pharmacokinetics. Biochem Pharmacol 1994;47:1503–1508.

    Google Scholar 

  85. Kim RB, O'Shea D. Interindividual variability of chlorzoxazone 6-hydroxylation in men and women and its relationship to CYP2E1 genetic polymorphisms. Clin Pharmacol Ther 1995;57:645–655.

    Google Scholar 

  86. Watkins PB, Turgeon DK, Saenger P, Lown KS, Kolars JC, Hamilton T, Fishman K, Guzelian PS, Voorhees JJ. Comparison of urinary 6-beta-cortisol and the erythromycin breath test as measures of hepatic P450IIIA (CYP3A) activity. Clin Pharmacol Ther 1992;52:265–273.

    Google Scholar 

  87. Oellerich M, Raude E, Burdelski M, Schulz M, Schmidt FW, Ringe B, Lamesch P, Pichlmayr R, Raith H, Scheruhn M, et al. Monoethylglycinexylidide formation kinetics: a novel approach to assessment of liver function. J Clin Chem Clin Biochem 1987;25:845–853.

    Google Scholar 

  88. Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Hartwell PS, Raisys VA, Marsh CL, McVicar JP, Barr DM, et al. Use of midazolam as a human cytochrome P450 3A probe: I. In vitro- in vivo correlations in liver transplant patients. J Pharmacol Exp Ther 1994;271:549–556.

    Google Scholar 

  89. Thummel KE, Shen DD, Podoll TD, Kunze KL, Trager WF, Bacchi CE, Marsh CL, McVicar JP, Barr DM, Perkins JD, et al. Use of midazolam as a human cytochrome P450 3A probe: II. Characterization of inter-and intraindividual hepatic CYP3A variability after liver transplantation. J Pharmacol Exp Ther 1994;271:557–566.

    Google Scholar 

  90. Frye RF, Matzke GR, Adedoyin A, Porter JA, Branch RA. Validation of the five-drug "Pittsburgh cocktail" approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 1997;62:365–376.

    Google Scholar 

  91. Adedoyin A, Frye RF, Mauro K, Branch RA. Chloroquine modulation of specific metabolizing enzymes activities: investigation with selective five drug cocktail. Br J Clin Pharmacol 1998;46:215–219.

    Google Scholar 

  92. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997;32:210–258.

    Google Scholar 

  93. Li AP, Maurel P, Gomez-Lechon MJ, Cheng LC, Jurima-Romet M. Preclinical evaluation of drug-drug interaction potential: present status of the application of primary human hepatocytes in the evaluation of cytochrome P450 induction. Chem Biol Interact 1997;107:5–16.

    Google Scholar 

  94. Guengerich FP. Role of cytochrome P450 enzymes in drug- drug interactions. Adv Pharmacol 1997;43:7–35.

    Google Scholar 

  95. Shannon M. Drug- drug interactions and the cytochrome P450 system: an update. Pediatr Emerg Care 1997;13: 350–353.

    Google Scholar 

  96. Cupp MJ, Tracy TS. Cytochrome P450: new nomeclature and clinical implications. Am Fam Physician 1998;57: 107–116.

    Google Scholar 

  97. Wynn RL, Meiller TF. CYP enzymes and adverse drug reactions. Gen Dent 1998;46:436–438.

    Google Scholar 

  98. Caraco Y. Genetic determinants of drug responsiveness and drug interactions. Ther Drug Monit 1998;20:517–524.

    Google Scholar 

  99. Gillam EM. Human cytochrome P450 enzymes expressed in bacteria: reagents to probe molecular interactions in toxicology. Clin Exp Pharmacol Physiol 1998;25:877–886.

    Google Scholar 

  100. Kalow W, Endrenyi L, Tang B. Repeat administration of drugs as a means to assess the genetic component in pharmacological variability. Pharmacology 1999;58:281–284.

    Google Scholar 

  101. Glue P, Clement RP. Cytochrome P450 enzymes and drug metabolism-basic concepts and methods of assessment. Cell Mol Neurobiol 1999;19:309–323.

    Google Scholar 

  102. Ioannides C, ed. Cytochromes P450: Metabolic and Toxicological Aspects, New York: CRC Press, 1996.

    Google Scholar 

  103. Jefcoate CR, ed. Physiological Functions of Cytochrome P450 in Relation to Structure and Regulation (Advances in Molecular and Cell Biology, Vol 14), Stanford: JAI Press, 1997.

    Google Scholar 

  104. Wendell W, ed. Pharmacogenetics, Oxford: Oxford Univ Press, 1997.

    Google Scholar 

  105. Phillips IR, Shephard EA, ed. Cytochrome P450 Protocols (Methods in Molecular Biology, (Clifton, N.J.), 107.), Totowa: Humana Press, 1998.

    Google Scholar 

  106. Flockhart DA, Oesterheld JR. Cytochrome P450-mediated drug interactions. Child Adolesc Psychiatr Clin N Am 2000;9:43–76.

    Google Scholar 

  107. Watanabe M. Polymorphic CYP genes and disease predisposition— what have the studies shown so far? Toxicol Lett 1998;102- 103:167–171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, E. Polymorphism of drug metabolizing enzymes in humans. Sepsis 4, 247–254 (2001). https://doi.org/10.1023/A:1012969108581

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012969108581

Navigation