Skip to main content

Cytochrome P450 Genes: Their Role in Drug Metabolism and Violence

  • Living reference work entry
  • First Online:
Handbook of Anger, Aggression, and Violence

Abstract

Cytochrome P450 (CYP450) enzymes are well-known for their ability to metabolize endogenous and xenobiotic substrates. Fifty-seven functional P450 genes have been identified in humans. This chapter focuses on P450 gene families 1, 2, and 3, as about a dozen enzymes in these families are responsible for the metabolism of the majority of prescription drugs. Genetic polymorphism for these CYP450s can have severe metabolic consequences, since toxicity can be caused by reduced or loss-of-function variant alleles. In addition, drug-drug (DDI), drug-gene (DGI), and drug-drug-gene (DDGI) interactions can significantly impact the ability of individuals to properly metabolize prescriptive medications and may result in adverse drug events (ADEs) or adverse drug reactions (ADRs), which are a major medical concern. Pharmacogenetic testing is a powerful tool in predicting these effects, but there are complicating issues, e.g., substrate specificity, enzyme promiscuity, phenoconversion, epigenetics, heterogeneity of CYP450 enzyme activity in different organs, altered sensitivity to inhibition, and interindividual or interethnic variations in metabolic ability. The best way to estimate metabolic rates is by combining genotyping, phenotyping, and therapeutic drug monitoring, in addition to carefully observing and listening to the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ADE:

Adverse Drug Event

ADR:

Adverse Drug Reaction

CYP450:

Cytochrome P450

DDGI:

Drug-Drug-Gene Interaction

DDI:

Drug-Drug Interaction

DGI:

Drug-Gene Interaction

EM:

Extensive Metabolizer

EPS:

Extrapyramidal Symptoms

IM:

Intermediate Metabolizer

PharmVar:

Pharmacogene Variation Consortium

SNP:

Single Nucleotide Polymorphism

SSRI:

Selective Serotonin Re-uptake Inhibitor

UM:

Ultrarapid Metabolizer

References

  • Andreassen OA, MacEwan T, Gulbrandsen AK et al (1997) Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients. Psychopharmacology 131:174–179

    Article  PubMed  Google Scholar 

  • Armstrong M, Daly AK, Blennerhassett R et al (1997) Antipsychotic drug-induced movement disorders in schizophrenics in relation to CYP2D6 genotype. Br J Psychiatry 170:23–26

    Article  PubMed  Google Scholar 

  • Azhar MZ, Varma SL (1992) Akathisia-induced suicidal behaviour. Eur Psychiatry 7(5):239–241

    Article  Google Scholar 

  • Bertilsson L, Dahl ML, Tybring G (1997) Pharmacogenetics of antidepressants: clinical aspects. Acta Psychiatr Scand Suppl 391:14–21

    Article  PubMed  Google Scholar 

  • Björkenstam C, Möller J, Ringbäck G et al (2013) An association between initiation of selective serotonin reuptake inhibitors and suicide – a Nationwide register-based case-crossover study. PLoS One 8(9):e73973

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonder MJ, Kasela S, Kals M et al (2014) Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics 15(1):860

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowers MB, Swigar ME (1988) Psychotic patients who become worse on neuroleptics. J Clin Psychopharmacol 8:417–421

    Article  PubMed  Google Scholar 

  • Breggin PR (2003) Suicidality, violence, and mania caused by selective serotonin reuptake inhibitors: a review and analysis. Int J Risk Saf Med 16:31–49

    Google Scholar 

  • Breggin PR (2006a) How GlaxoSmithKline suppressed data on Paxil-induced akathisia: implications for suicidality and violence. Ethical Hum Psychol Psychiatry 8(2):91–100

    Article  Google Scholar 

  • Breggin PR (2006b) Court filing makes public my previously suppressed analysis of Paxil’s effects. Ethical Hum Psychol Psychiatry 8(1):77–84

    Article  PubMed  Google Scholar 

  • Breggin PR (2008) Medication madness. St. Martins Press, New York

    Google Scholar 

  • Brosen K (1990) Recent developments in hepatic drug oxidation: implications for clinical pharmacokinetics. Clin Pharmacokinet 18(3):220–239

    Article  PubMed  Google Scholar 

  • Cipriano L (2006) Anti-depressant may cause homicidal feelings. July 12 Available via: https://www.newschannel10.com/story/5138519/anti-depressant-may-cause-homicidal-feelings. Accessed 25 Feb 2022

  • Conrado DJ, Rogers HL, Zineh I et al (2013) Consistency of drug–drug and gene–grug interaction information in US FDA-approved drug labels. Pharmacogenomics 14(2):215–223

    Article  PubMed  Google Scholar 

  • Crowner ML, Douyon R, Convit A et al (1990) Akathisia and violence. Psychopharmacol Bull 26(1):115–117

    PubMed  Google Scholar 

  • Damluij NF, Ferguson JM (1988) Parodoxical worsening of depressive symptomatology caused by antidepressants. J Clin Psychopharmacol 8(5):347–348

    Google Scholar 

  • Danielson PB (2002) The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab 3(6):561–597

    Article  PubMed  Google Scholar 

  • DeSwarte RD (1986) Drug allergy: an overview. Clin Rev Allergy 4:143–169

    Article  PubMed  Google Scholar 

  • Eikelenboom-Schieveld SJM, Fogleman JC (2021) Psychoactive medication, violence, and variant alleles for cytochrome P450 genes. J Pers Med 11(426):1–16

    Google Scholar 

  • Eikelenboom-Schieveld SJM, Lucire Y, Fogleman JC (2016) The relevance of cytochrome P450 polymorphism in forensic medicine and akathisia-related violence and suicide. J Forensic Legal Med 41:65–71

    Article  Google Scholar 

  • FDA (2004) Revisions to product labeling. Available via: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/suicidality-children-and-adolescents-being-treated-antidepressant-medications. Accessed 8 Jan 2022

  • FDA (2007) Revisions to product labeling. Available via: https://www.fda.gov/media/77404/download. Accessed 10 Mar 2022

  • Flockhart D, Rae JM (2003) Cytochrome P450 3A pharmacogenetics: the road that needs traveled. Pharmacogenomics J 3:3–7

    Article  PubMed  Google Scholar 

  • Geadigk A (2018) Pharmacogene Variation Consortium. Available via: http://www.pharmvar.org. Accessed 20 Feb 2022

  • George J, Murray M, Byth K et al (1995) Differential alterations of cytochrome P450 proteins in livers from patients with severe chronic liver disease. Hepatology 21(1):120–128

    PubMed  Google Scholar 

  • Gill M, Hawi Z, Webb M (1997) Homozygous mutation at cytochrome P4502D6 in an individual with schizophrenia: implications for antipsychotic drugs, side effects and compliance. Ir J Psychol Med 14(1):38–39

    Article  Google Scholar 

  • Hall RCW, Zisook S (1981) Parodoxical reactions to benzodiazepines. Br J Clin Pharmacol 11:99–104

    Article  Google Scholar 

  • Hamilton MS, Opler LA (1992) Akathisia, suicidality and fluoxetine. J Clin Psychiatry 53:401–406

    PubMed  Google Scholar 

  • Healy D, Farquhar G (1998) Immediate effects of Droperidol. Hum Psychopharmacol 13:113–120

    Article  Google Scholar 

  • Healy D, Herxheimer A, Menkes DB (2006) Antidepressants and violence: problems at the interface of medicine and law. PLoS Med 3(9):e372

    Article  PubMed  PubMed Central  Google Scholar 

  • Hocum BT, White JR, Heck JW et al (2016) Cytochrome P-450 gene and Drug interaction analysis in patients referred for Pharmacogenetic testing. Am J Health Syst Pharm 73(2):61–67

    Article  PubMed  Google Scholar 

  • Hoffman MF, Preissner SC, Nickel J et al (2014) The transformer database: biotransformation of xenobiotics. Nucleic Acids Res 42:D1113–D1117

    Article  Google Scholar 

  • Ingelman-Sundberg M (2005) Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J 5(1):6–13

    Article  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Sim SC (2010) Pharmacogenetic biomarkers as tools for improved drug therapy. Biochem Biophys Res Commun 396:90–94

    Article  PubMed  Google Scholar 

  • Ji Y, Skierka J, Blommel J et al (2016) Preemptive Pharmacogenomic testing for precision medicine: a comprehensive analysis of five actionable Pharmacogenomic genes using next-generation DNA sequencing and a customized CYP2D6 genotyping Cascade. J Mol Diagn 18(3):438–445

    Article  PubMed  PubMed Central  Google Scholar 

  • Jokinen J, Boström A, Ã…sberg M et al (2018) Severity of suicide attempt is associated with epigenetic and transcriptional changes in the CYP2D6Gene. Biol Pyschiatry 83:S373

    Article  Google Scholar 

  • Kalow W (2006) Pharmacogenetics and pharmacogenomics: origin, status, and the Hope for personalized medicine. Pharmacogenomics J 6:162–165

    Article  PubMed  Google Scholar 

  • Kirchheiner J, Nickchen K, Bauer M et al (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9(5):442–473

    Google Scholar 

  • Kupelian D (2010) How evil works. Republic Book Publishers, New York

    Google Scholar 

  • Lamba V, Lamba J, Yasuda K et al (2003) Hepatic CYP2B6 expression: gender and ethnic differences and relationship to CYP2B6 genotype and CAR (constitutive Androstane receptor) expression. J Pharmacol Exp Ther 307(3):906–922

    Article  PubMed  Google Scholar 

  • Lane RM (1998) SSRI-induced extrapyramidal side-effects and akathisia: implications for treatment. J Psychopharmacol 12(2):192–214

    Article  PubMed  Google Scholar 

  • Lazarou J, Pomeranz BH, Corey PN (1998) Incidence of adverse drug reactions in hospitalized patients. JAMA 279(15):1200

    Article  PubMed  Google Scholar 

  • Loomis WF (1988) Four billion years. Sinauer Associates, MA

    Google Scholar 

  • Lucire Y, Crotty C (2011) Antidepressant-induced akathisia-related homicides associated with diminishing mutations in metabolizing genes of the CYP450 family. Pharmgenomics Pers Med 4:65–81

    PubMed  PubMed Central  Google Scholar 

  • Ma Q, Lu AYH (2008) The challenges of dealing with promiscuous drug-metabolizing enzymes, receptors and transporters. Curr Drug Metab 9(5):374–383

    Article  PubMed  Google Scholar 

  • Mancuso CE, Tanzi MG, Gabay M (2004) Paradoxical reactions to benzodiazepines. Pharmacotherapy 24(9):1177–1185

    Article  PubMed  Google Scholar 

  • Marcucci C (2015) A case approach to perioperative drug-drug interactions. Springer, New York

    Book  Google Scholar 

  • McKinnon RA, Sorich MJ, Ward MB (2008) Cytochrome P450 part 1: multiplicity and function. J Pharm Pract Res 38(1):55–57

    Article  Google Scholar 

  • Moore TJ, Glenmullen J, Furberg CD (2010) Prescription drugs associated with reports of violence towards others. PLoS One 5(12):e15337

    Article  PubMed  PubMed Central  Google Scholar 

  • Muroi Y, Saito T, Takahashi M et al (2014) Functional characterization of wild-type and 49 CYP2D6 allelic variants for N-Desmethyltamoxifen 4-hydroxylation activity. Drug Metab Pharmacokinet 29(5):360–366

    Article  PubMed  Google Scholar 

  • Nebert DW, Gonzales FJ (1985) CytochromeP450 gene expression and regulation. Trends Pharmacol Sci 6:160–164

    Article  Google Scholar 

  • Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzales FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, Levin W, Phillips IR, Sato R, Waterman MR (1987) The CYP450 gene superfamily: recommended nomenclature. DNA 6(1):1–11

    Article  PubMed  Google Scholar 

  • Nishimura M, Yaguti H, Yoshitsugu H et al (2003) Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high­sensitivity real­time reverse transcription PCR. Chem Pharm Bull 123(5):369–375

    Google Scholar 

  • Ortiz de Montellano PR (2015) Cytochrome P450: structure, mechanism and biochemistry, 4th edn. Springer, Heidelberg

    Google Scholar 

  • Out HJ, Van Meurs P, Van Olden R (2014) Handboek Farmaceutische Geneeskunde. Bohn Stafleu van Loghum, Houten

    Book  Google Scholar 

  • Padmanabhan S (2014) Handbook of pharmacogenomics and stratified medicine. Elsevier, San Diego

    Google Scholar 

  • Peng L, Zhong X (2015) Epigenetic regulation of drug metabolism and transport. Acta Pharm Sin 5(2):106–112

    Article  Google Scholar 

  • Phillips KA, Veenstra DL, Oren E et al (2001) Potential role of pharmacogenomics in reducing adverse drug reactions. A systematic review. JAMA 286(18):2270–2279

    Article  PubMed  Google Scholar 

  • Piatkov I (2009) Cytochrome P450 loss-of-function polymorphism genotyping on the Agilent bioanalyzer and clinical application. Pharmacogenomics 10(12):1987–1994

    Article  PubMed  Google Scholar 

  • Preissner SC, Hoffmann MF, Preisnner R et al (2013) Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One 8(12). https://doi.org/10.1371/journal.pone.0082562

  • Preskorn S (2018) Drug-drug interactions. Professional Communications, West Islip

    Google Scholar 

  • Preskorn SH, Kane CP, Lobello K et al (2013) Cytochrome P450 2D6 Phenoconversion is common in patients being treated for depression: implications for personalized medicine. J Clin Psychiatry 74(6):614–621

    Article  PubMed  Google Scholar 

  • Rampling D (1978) Aggression: a parodoxical response to tricyclic antidepressants. Am J Psychiatry 135(1):117–118

    Article  PubMed  Google Scholar 

  • Sakuyama K, Sasaki T, Ujiie S et al (2008) Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A–B, 18, 27, 36, 39, 47–51, 53–55, and 57). Drug Metab Dispos 36(12):2460–2467

    Article  PubMed  Google Scholar 

  • Sandson NB (2002) Drug-drug interaction primer. American Psychiatric Publishing, Arlington

    Google Scholar 

  • Schulte JL (1985) Homicide and suicide associated with akathisia and haloperidol. Am J Forensic Psychiatry 6(2):3–7

    Google Scholar 

  • Shah RR, Smith RL (2014) Addressing Phenoconversion: the Achilles’ heel of personalized medicine. Br J Clin Pharmacol 79(2):222–240

    Article  Google Scholar 

  • Shah R, Gaedigk A, LLerena A et al (2016) CYP450 genotype and Pharmacogenetic association studies: a critical appraisal. Pharmacogenomics 17(3):259–275

    Article  PubMed  Google Scholar 

  • Shear MK, Frances A, Weiden P (1983) Suicide associated with akathisia and depot Fluphenazine treatment. J Clin Psychopharmacol 3(4):235–236

    Article  PubMed  Google Scholar 

  • Short TG, Forrest P, Gattetly DC (1987) Paradoxical reactions to Bezodiazepines–a genetically determined phenomenon? Anaesth Intensive Care 15(3):330–345

    Article  PubMed  Google Scholar 

  • Spinelli MG (2004) Infanticide. JAMA 3(1):2157–2158

    Google Scholar 

  • Suri A, Bramer SL (1999) Effect of omeprazole on the metabolism of Cilostazol. Clin Pharmacokinet 37:53–59

    Article  PubMed  Google Scholar 

  • Verbeurgt P, Mamiya T, Oesterheld J (2014) How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics 15(5):655–665

    Article  PubMed  Google Scholar 

  • Vet NJ, De Hoog M, Tibboel D et al (2011) The effect of inflammation on drug metabolism: a focus on pediatrics. Drug Discov Today 16(9/10):435–442

    Article  PubMed  Google Scholar 

  • Wynn GH, Oesterheld JR, Cozza KL et al (2009) Clinical manual of drug interaction principles for medical practice. American Psychiatric Publishing, Arlington

    Google Scholar 

  • Xu C, Li CY-T, Kong A-N (2005) Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res 28(3):249–268

    Article  PubMed  Google Scholar 

  • Yamazaki H (2014) Fifty years of cytochrome P450 research. Springer, Tokyo

    Book  Google Scholar 

  • Yoo H-D, Cho H-Y, Lee Y-B (2009) Population pharmacokinetic analysis of Cilostazol in healthy subjects with genetic polymorphisms of CYP3A5, CYP2C19 and ABCB1. Br J Clin Pharmacol 69(1):27–37

    Article  Google Scholar 

  • Zackrisson AL (2009) Pharmacogenetics from a forensic perspective: CYP2D6 and CYP2C19 genotype distributions in autopsy cases. Available via: http://www.diva-portal.org/smash/get/diva2:213011/FULLTEXT01.pdf. Accessed 1 Mar 2022

  • Zackrisson AL, Lindblom B, Ahlner J (2009) High frequency of occurrence of CYP2D6 gene duplication/multiduplication indicating Ultrarapid metabolism among suicide cases. Clin Pharmacol and Ther 88(3):354–359

    Article  Google Scholar 

  • Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141

    Article  PubMed  Google Scholar 

  • Zanger UM, Klein K, Thomas M, Rieger JK, Tremmel R, Kandel BA, Klein M, Magdy T (2014) Genetics, epigenetics, and regulation of drug-metabolizing cytochrome P450 enzymes. Clin Pharmacol Ther 95(3):258–261

    Article  PubMed  Google Scholar 

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298

    Article  Google Scholar 

  • Zhou SF (2009) Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet 48(11):689–723

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Fogleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Eikelenboom-Schieveld, S.J.M., Fogleman, J.C. (2022). Cytochrome P450 Genes: Their Role in Drug Metabolism and Violence. In: Martin, C., Preedy, V.R., Patel, V.B. (eds) Handbook of Anger, Aggression, and Violence. Springer, Cham. https://doi.org/10.1007/978-3-030-98711-4_84-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-98711-4_84-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-98711-4

  • Online ISBN: 978-3-030-98711-4

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics