Skip to main content
Log in

Accuracy of ferric/ferrous determinations in micas: A comparison of Mössbauer spectroscopy and the Pratt and Wilson wet-chemical methods

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We compare ferric/ferrous determinations in mica granules and powders, as obtained by the Pratt and Wilson wet chemical (WC) methods and by Mössbauer spectroscopy (MS). The Pratt method is accurate whereas the Wilson method is not but both have the same precision (σ = 1.2 wt.% FeO). Assuming that the Pratt WC method gave accurate ferric/ferrous ratios leads to a calculated ferric/ferrous ratio of MS recoilless fractions at room temperature for a given biotite sample of f 3+/f 2+ = 1.009(5). Also, the Mica-Fe and Mica-Mg international standards are shown to be unsuitable, with significant size-fraction dependencies of their oxidation states. These results are discussed in the general context of evaluating accuracy and precision of WC methods by comparisons with MS and of the special problems related to accuracy and precision with MS itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.M. Johnson and J.A. Maxwell, Rock and Mineral Analysis (Wiley, New York, 1981).

    Google Scholar 

  2. J.E. Amonette, F.A. Khan, H. Gan, J.W. Stucki and A.D. Scott, in: Proc. of the 11th Internat. Clay Conf., Canadian Soil Sci., Special Issue (1998) in press.

  3. D.G. Rancourt, I.A.D. Christie, M. Royer, H. Kodama, J.-L. Robert, A.E. Lalonde and E. Murad, Am. Miner. 79 (1994) 51.

    Google Scholar 

  4. D.G. Rancourt, M.-Z. Dang and A.E. Lalonde, Am. Miner. 77 (1992) 34.

    Google Scholar 

  5. D.G. Rancourt, J.Y. Ping, B. Boukili and J.-L. Robert, Phys. Chem. Miner. 23 (1996) 63.

    Article  ADS  Google Scholar 

  6. A.A.T. Shabani, D.G. Rancourt and A.E. Lalonde, Hyp. Interact., this volume.

  7. E. DeGrave and A. VanAlboom, Phys. Chem. Miner. 18 (1991) 337.

    ADS  Google Scholar 

  8. D.G. Rancourt, Nucl. Instrum. Methods Phys. Res. B 44 (1989) 199.

    ADS  Google Scholar 

  9. A.E. Lalonde, Geology 17 (1989) 261.

    Article  ADS  Google Scholar 

  10. K. Govindaraju, Geostandards Newslet. 3 (1979) 3.

    Google Scholar 

  11. A.E. Lalonde and P. Bernard, Can. Miner. 31 (1993) 203.

    Google Scholar 

  12. S. Abbey, Geol. Surv. Can. Paper 83-15 (1983).

  13. K. Govindaraju, Geostandards Newslet. 18, Special Issue (1994) 1.

    Google Scholar 

  14. P.G. Jefferey and D. Hutchison, Chemical Methods of Rock Analysis (Pergamon, Oxford, 1981).

    Google Scholar 

  15. H.N.S. Schafer, Analyst 91 (1966) 755.

    Article  ADS  Google Scholar 

  16. J.E. Amonette, F.A. Khan, A.D. Scott, H. Gan and J.W. Stucki, in: Quantitative Methods in Soil Mineralogy, eds. J.E. Amonette and L.W. Zelazny, Soil Sci. Soc. of America, Madison, WI (1994) p. 114.

    Google Scholar 

  17. J.E. Amonette and J.C. Templeton, Clays Clay Miner. 46 (1998), in press.

  18. A.D. Wilson, Bull. Geol. Surv. Great Britain 9 (1955) 56.

    Google Scholar 

  19. A.D. Wilson, Analyst 85 (1960) 823.

    Article  ADS  Google Scholar 

  20. J.H. Pratt, Am. J. Sci. 48 (1894) 149.

    Google Scholar 

  21. J.W. Stucki, Soil Sci. Soc. Am. J. 45 (1981) 638.

    Article  Google Scholar 

  22. P. Komadel and J.W. Stucki, Clays Clay Miner. 36 (1988) 379.

    Google Scholar 

  23. E.R. Whipple, Chem. Geol. 14 (1974) 223.

    Article  Google Scholar 

  24. W.J. French and S.J. Adams, Analyst 97 (1972) 828.

    Article  ADS  Google Scholar 

  25. H.N.S. Schafer, Analyst 91 (1966) 763.

    Article  ADS  Google Scholar 

  26. Staff of the Geoscience Laboratories, Ontario Geological Survey, Paper 149 (1990) p. EA15–1.

    Google Scholar 

  27. G.S. Bien and E.D. Goldberg, Anal. Chem. 28 (1956) 97.

    Article  Google Scholar 

  28. R. Mauzelius, Sveriges Geologiska Undersökning Årsbok 1(3) (1907) 1.

    Google Scholar 

  29. W.F. Hillebrand, G.E.F. Lundell, H.A. Bright and J.I. Hoffman, Applied Inorganic Analysis, 2nd ed. (Wiley, New York, 1953) pp. 813–814.

    Google Scholar 

  30. D.G. Rancourt, Phys. Chem. Miner. 21 (1994) 244.

    ADS  Google Scholar 

  31. D.G. Rancourt, Phys. Chem. Miner. 21 (1994) 250.

    Article  ADS  Google Scholar 

  32. D.G. Rancourt, J.Y. Ping and R.G. Berman, Phys. Chem. Miner. 21 (1994) 258.

    ADS  Google Scholar 

  33. D.G. Rancourt and J.Y. Ping, Nucl. Instrum. Methods Phys. Res. B 58 (1991) 85.

    ADS  Google Scholar 

  34. K. Lagarec and D.G. Rancourt, Nucl. Instrum. Methods Phys. Res. B 129 (1997) 266.

    ADS  Google Scholar 

  35. D.G. Rancourt, A.M. McDonald, A.E. Lalonde and J.Y. Ping, Am. Miner. 78 (1993) 1.

    Google Scholar 

  36. D.G. Rancourt, in: Mössbauer Spectroscopy Applied to Magnetism and Material Science, Vol. 2, eds. G.J. Long and F. Grandjean (Plenum, New York, 1996) p. 105.

    Google Scholar 

  37. J.Y. Ping and D.G. Rancourt, Hyp. Interact. 71 (1992) 1433.

    Article  ADS  Google Scholar 

  38. P. Hargraves, D.G. Rancourt and A.E. Lalonde, Can. J. Phys. 64 (1990) 128.

    ADS  Google Scholar 

  39. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  40. J.E. Amonette and A.D. Scott, Chem. Geol. 92 (1991) 329.

    Article  Google Scholar 

  41. M. Royer, Site-specific Fe-57 Mössbauer recoilless fractions in true trioctahedral micas, M.Sc. thesis, University of Ottawa (1991).

  42. E.E. Alp, in: Workshop W2, 11th Internat. Clay Conf., Ottawa, Ontario (1997) p. 75.

  43. E.E. Alp, W. Sturhahn and T. Toellner, Nucl. Instrum. Methods Phys. Res. B 97 (1995) 526.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalonde, A., Rancourt, D. & Ping, J. Accuracy of ferric/ferrous determinations in micas: A comparison of Mössbauer spectroscopy and the Pratt and Wilson wet-chemical methods. Hyperfine Interactions 117, 175–204 (1998). https://doi.org/10.1023/A:1012607813487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012607813487

Keywords

Navigation