Skip to main content
Log in

Bilipschitz Embeddings of Metric Spaces into Space Forms

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The paper describes some basic geometric tools to construct bilipschitz embeddings of metric spaces into (finite-dimensional) Euclidean or hyperbolic spaces. One of the main results implies the following: If X is a geodesic metric space with convex distance function and the property that geodesic segments can be extended to rays, then X admits a bilipschitz embedding into some Euclidean space iff X has the doubling property, and X admits a bilipschitz embedding into some hyperbolic space iff X is Gromov hyperbolic and doubling up to some scale. In either case the image of the embedding is shown to be a Lipschitz retract in the target space, provided X is complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [ABi] Alexander, S. B. and Bishop, R. L.: The Hadamard Cartan theorem in locally con-vex metric spaces, Enseign. Math. 36 (1990), 309-320.

    Google Scholar 

  • [Al] Almgren, F. J.: The homotopy groups of the integral cycle groups, Topology 1 (1962), 257-299.

    Google Scholar 

  • [AmK] Ambrosio, L. and Kirchheim, B.: Currents in metric spaces, Acta Math. 185 (2000), 1-80.

    Google Scholar 

  • [As1] Assouad, P.: Étude d'une dimension métrique liée à la possibilitéde plongement dans ℝ”, C. R. Acad. Sci. Paris 288 (1979), 731-734.

    Google Scholar 

  • [As2] Assouad, P.: Plongements Lipschitziens dans ℝ”, Bull. Soc. Math. France 111 (1983), 429-448.

    Google Scholar 

  • [B] Berestovskii, V. N.: Introduction of a Riemannian structure in certain metric spaces, Siberian Math. J. 16 (1975), 210-221.

    Google Scholar 

  • [BoS] Bonk, M. and Schramm, O.: Embeddings of Gromov hyperbolic spaces, Preprint.

  • [BrH] Bridson, M. R. and Haefliger, A.: Metric Spaces of Non-Positive Curvature, Springer, New York, 1999.

    Google Scholar 

  • [C] Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 413-460.

    Google Scholar 

  • [G1] Gromov, M.: Filling Riemannian manifolds, J. Differential Geom. 18 (1983), 1-147.

    Google Scholar 

  • [G2] Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math. 152, Birkhäuser, 1999.

  • [HuW] Hurewicz, W. and Wallman, H.: Dimension Theory, Princeton Univ. Press, 1948.

  • [L] Laakso, T. J.: Ahlfors Q-regular spaces with arbitrary Q > 1 admitting weak Poincaréinequality, Geom. Funct. Anal. 10 (2000), 111-123.

    Google Scholar 

  • [La] Lang, U.: Higher-dimensional linear isoperimetric inequalities in hyperbolic groups, Internat. Math. Res. Notices 2000, 709-717.

  • [La+] Lang, U., Pavlović, B. and Schroeder, V.: Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal. 10 (2000), 1527-1553.

    Google Scholar 

  • [Lu] Luosto, K.: Ultrametric spaces bi-Lipschitz embeddable in ℝ”, Fundam. Math. 150 (1996), 25-42.

    Google Scholar 

  • [Luu] Luukainen, J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures, J. Korean Math. Soc. 35 (1998), 23-76.

    Google Scholar 

  • [LuuMo] Luukainen, J. and Movahedi-Lankarani, H.: Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fundam. Math. 144 (1994), 181-193.

    Google Scholar 

  • [M] McShane, E. J.: Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), 837-842.

    Google Scholar 

  • [P] Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. Math. 129 (1989), 1-60.

    Google Scholar 

  • [Pa] Pauls, S. D.: The large scale geometry of nilpotent Lie groups, Preprint.

  • [Se1] Semmes, S.: Bi-Lipschitz mappings and strong A∞ weights, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 211-248.

    Google Scholar 

  • [Se2] Semmes, S.: On the nonexistence of bilipschitz parameterizations and geometric problems about A ∞-weights, Rev. Mat. Iberoamer. 12 (1996), 337-410.

    Google Scholar 

  • [Se3] Semmes, S.: Metric spaces and mappings seen at many scales, Appendix B in [G2].

  • [Se4] Semmes, S.: Bilipschitz embeddings of metric spaces into Euclidean spaces, Publ. Mat. 43 (1999), 571-653.

    Google Scholar 

  • [St] Stein, E. M.: Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970.

  • [We] Wenger, S.: Isoperimetric inequalities in weakly convex metric spaces, diploma thesis, ETH Zürich, March, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, U., Plaut, C. Bilipschitz Embeddings of Metric Spaces into Space Forms. Geometriae Dedicata 87, 285–307 (2001). https://doi.org/10.1023/A:1012093209450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012093209450

Navigation