Skip to main content
Log in

Finite Homogeneous Metric Spaces

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The authors study the class of finite homogeneous metric spaces and some of its important subclasses that have natural definitions in terms of the metrics and well-studied analogs in the class of Riemannian manifolds. The relationships between these classes are explored. The examples of the corresponding spaces are built, some of which are the vertex sets of the special convex polytopes in Euclidean space. We describe the classes on using the language of graph theory, which enables us to provide some examples of finite metric spaces with unusual properties. Several unsolved problems are posed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berestovskii V. N. and Nikonorov Yu. G., “Killing vector fields of constant length on Riemannian manifolds,” Sib. Math. J., vol. 49, no. 3, 395–407 (2008).

    Article  MathSciNet  Google Scholar 

  2. Berestovskii V. N. and Nikonorov Yu. G., “Clifford-Wolf homogeneous Riemannian manifolds,” J. Differ. Geom., vol. 82, no. 3, 467–500 (2009).

    Article  MathSciNet  Google Scholar 

  3. Berestovskii V. N. and Nikonorov Yu. G., “Generalized normal homogeneous Riemannian metrics on spheres and projective spaces,” Ann. Global Anal. Geom., vol. 45, no. 3, 167–196 (2014).

    Article  MathSciNet  Google Scholar 

  4. Berestovskii V. N. and Nikonorov Yu. G., Riemannian Manifolds and Homogeneous Geodesics [Russian], SMI VSC RAS, Vladikavkaz (2012).

    Google Scholar 

  5. Berger M., Geometry. Vol. 1, Springer-Verlag, Berlin (2009).

    MATH  Google Scholar 

  6. Wenninger M. J., Polyhedron Models, Cambridge University Press, London and New York (1971).

    Book  Google Scholar 

  7. Coxeter H. S. M., Regular Polytopes. 3d ed., Dover, New York (1973).

    MATH  Google Scholar 

  8. Coxeter H. S. M., Regular Complex Polytopes. 2nd ed., Cambridge University Press, Cambridge (1991).

    MATH  Google Scholar 

  9. Zykov A. A., Fundamentals of Graph Theory, BCS Associates, Moscow, ID (1990).

    MATH  Google Scholar 

  10. Harary F., Graph Theory, Addison-Wesley Publishing Co., Reading, Mass., Menlo Park, Calif., London (1969).

    Book  Google Scholar 

  11. Grossman I. and Magnus W., Groups and Their Graphs, Random House; The L. W. Singer Co., New York (1964).

    MATH  Google Scholar 

  12. Coxeter H. S. M. and Moser W. O. J., Generators and Relations for Discrete Groups. Fourth Edition, Springer-Verlag, Berlin and New York (1980).

    Book  Google Scholar 

  13. Maschke H., “The representation of finite groups, especially of the rotation groups of the regular bodies of three- and four-dimensional space, by Cayley’s color diagrams,” Amer. J. Math., vol. 18, no. 2, 156–194 (1896).

    Article  MathSciNet  Google Scholar 

  14. Knauer K. and Knauer U., “On planar right groups,” Semigroup Forum, vol. 92, 142–157 (2016).

    Article  MathSciNet  Google Scholar 

  15. Berestovskii V. N. and Guijarro L., “A metric characterization of Riemannian submersions,” Ann. Global Anal. Geom., vol. 18, no. 6, 577–588 (2000).

    Article  MathSciNet  Google Scholar 

  16. Avgustinovich S. and Fon-Der-Flaass D., “Cartesian products of graphs and metric spaces,” European J. Combin., vol. 21, no. 7, 847–851 (2000).

    Article  MathSciNet  Google Scholar 

  17. Kurosh A. G., The Theory of Groups. Second English Edition, 2 vols, Chelsea Publishing Co., New York (1960).

    MATH  Google Scholar 

  18. Wolf J. A., Spaces of Constant Curvature. Sixth Edition, Amer. Math. Soc. Chelsea Publishing, Providence (2011).

    MATH  Google Scholar 

  19. Babai L., “Symmetry groups of vertex-transitive polytopes,” Geom. Dedicata, vol. 6, no. 3, 331–337 (1977).

    Article  MathSciNet  Google Scholar 

  20. Andersen L. D. and Rodger C. A., Decompositions of Complete Graphs: Embedding Partial Edge-Colourings and the Method of Amalgamations. Surveys in Combinatorics, 2003 (Bangor), 7–41, London Math. Soc. Lecture Note Ser., 307, Cambridge University Press, Cambridge (2003).

    Google Scholar 

  21. Godsil C. and Royle G., Algebraic Graph Theory, Springer-Verlag, New York (2001) (Grad. Texts Math.; V. 207).

    Book  Google Scholar 

  22. Kutnar K. and Marušič D., “Recent trends and future directions in vertex-transitive graphs,” Ars Math. Contemp., vol. 1, no. 2, 112–125 (2008).

    Article  MathSciNet  Google Scholar 

  23. Tutte W. T., “The factors of graphs,” Canad. J. Math., vol. 4, 314–328 (1954).

    Article  Google Scholar 

  24. Cromwell P. R., Polyhedra, Cambridge University Press, Cambridge (1997).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Berestovskii or Yu. G. Nikonorov.

Additional information

Dedicated to Academician Yu. G. Reshetnyak on the occasion of his 90th birthday.

Russian Text © The Author(s), 2019, published in Sibirskii Matematicheskii Zhurnal, 2019, Vol. 60, No. 5, pp. 973–995.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berestovskii, V.N., Nikonorov, Y.G. Finite Homogeneous Metric Spaces. Sib Math J 60, 757–773 (2019). https://doi.org/10.1134/S0037446619050021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446619050021

Keywords

Navigation