Skip to main content
Log in

Rate of Convergence of the Gibbs Sampler in the Gaussian Case

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

We show that the Gibbs Sampler in the Gaussian case is closely linked to linear fixed point iterations. In fact stochastic linear iterations converge toward a stationary distribution under the same conditions as the classical linear fixed point one. Furthermore the covariance matrices are shown to satisify a related fixed point iteration, and consequently the Gibbs Sampler in the gaussian case corresponds to the classical Gauss-Seidel iterations on the inverse of the covariance matrix, and the stochastic over-relaxed Gauss-Seidel has the same limiting distribution as the Gibbs Sampler. Then an efficient method to simulate a gaussian vector is proposed. Finally numerical investigations are performed to understand the effect of the different strategies such as the initial ordering, the blocking and the updating order for iterations. The results show that in a geostatistical context the rate of convergence can be improved significantly compared to the standard case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Amit, Y., and Grenader, U., 1991, Comparing sweep strategies for stochastic relaxations: Journal of Multivariate Analysis, v. 37, p. 197–222.

    Google Scholar 

  • Armstrong, M., Galli, A., Le Loc'h, G., Eschard, R., and Geffroy, F., 2001, Plurigaussian simulations: Springer-Verlag, Berlin, 200 p.

    Google Scholar 

  • Barone, P., and Frigessi, A., 1990, Improving stochastic relaxation for gaussian random fields: Probability in the Engineering and Informational Sciences, v. 4, p. 369–389.

    Google Scholar 

  • Breiz, H., 1992, Analyse fonctionnelle: Théorie et applications, Masson, Paris, 234 p.

    Google Scholar 

  • Dufflo, M., 1997, Random iterative models: Springer-Verlag, Berlin, 385 p.

    Google Scholar 

  • Freulon, X., 1994, Conditional simulation of a Gaussian vector with linear and/or noisy observations, in Armstrong, M., and Dowd, P. A., eds., Geostatistical simulations: Kluwer, Dordrecht, p. 217–233.

    Google Scholar 

  • Froberg, C.-E., 1964, Introduction to numerical analysis: Addison-Wesley, Reading, MA, 340 p.

    Google Scholar 

  • Gantmacher, F. R., 1966, The theory of matrices (2 vols.): Chelsea, New York, 370 p.

    Google Scholar 

  • Gao, H., and Galli, A., 1999, Hasting-Metropolis algorithm and its convergence properties. Internal report, Centre de Géostatistique.

  • Gastinel, N., 1966, Analyse numérique linéaire: Hermann, Paris, 364 p.

    Google Scholar 

  • Householder, A. S., 1964, The theory of matrices in numerical analysis: Blaisdell, New York.

    Google Scholar 

  • Lantuéjoul, C., 1994, Non conditional simulation of stationary isotropic multigaussian random functions, in Armstrong, M., and Dowd, P. A., eds., Geostatistical simulations: Kluwer, Dordrecht, p. 147–177.

    Google Scholar 

  • Lantuéjoul, C., 1997, Iterative algorithms for conditional simulations, in Baafi, E. Y., and Schofield, N. A., eds., Geostatistics Wollongong '96, Vol. 1: Dordrecht: Kluwer, p. 27–40.

    Google Scholar 

  • Lantuéjoul, C., 2001, Geostatistical simulation: Models and algorithms, Spinger-Verlag, Berlin, 250 p.

    Google Scholar 

  • Le Loc'h, G., and Galli, A., 1997, Truncated plurigaussian method: Theoretical and practical points of view, in Baafi, E. Y., and Schofield, N. A., eds., GeostatisticsWollongong '96, Vol. 1: Dordrecht, Kluwer, p. 211–222.

    Google Scholar 

  • Matheron, G., 1973, The intrinsic random functions and their applications: Adv. Appl. Prob., Vol. 5, p. 439–468.

    Google Scholar 

  • Omre, H., and Tjelmeland, H., 1997, Petroleum geostatistics, in Baafi, E. Y., and Schofield, N. A., eds., Geostatistics Wollongong '96, Vol. 1: Dordrecht, Kluwer, p. 41–52.

    Google Scholar 

  • Roberts, G. O., and Sahu, S. K., 1997, Updating scheme, Correlation structure, blocking and parametrization for the Gibbs sampler: J. R. Statist. Soc. B, v. 59, No. 2, p. 291–317.

    Google Scholar 

  • Shinozuka, M., and Jan, C. M., 1972, Digital simulation of random processes and its applications. Journal of Sound and Vib., v. 25-1, p. 111–128.

    Google Scholar 

  • Varga, R. S., 1962, Matrix iterative analysis: Prentice-Hall, New York, 322 p.

    Google Scholar 

  • Wilkinson, J. H., 1965, The algebraic eigenvalue problem: Oxford University Press, New York, 662 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, A., Gao, H. Rate of Convergence of the Gibbs Sampler in the Gaussian Case. Mathematical Geology 33, 653–677 (2001). https://doi.org/10.1023/A:1011094131273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011094131273

Navigation