Skip to main content
Log in

Progressive formation of inclusions in the striatum and hippocampus of mice transgenic for the human Huntington's disease mutation

  • Published:
Journal of Neurocytology

Abstract

The significance of neuronal intranuclear inclusions (NIIs) and extranuclear inclusions (ENNIs) in the brains of patients with polyglutamine repeat diseases and transgenic mice modelling these diseases is hotly debated. We examined inclusions in the brains of mice transgenic for the human Huntington's disease mutation and found that their size, number and location varied markedly with age and neuronal phenotype. In striatum and hippocampus particularly, inclusions appeared at different times in different cell types. Further, the mechanism of formation of inclusions appears to be complex, with several distinct phases. These include a precipitous formation of NIIs followed by NII growth, and the concomitant formation ENNIs. While the timing of appearance of NIIs and ENNIs parallels the cognitive and motor decline of the mice, the precise role of NIIs and ENNIs is unknown. It has been variously suggested that NIIs may be deleterious, benign or beneficial. However, our data allows the possibility that each of these is possible, and suggest also that the role of inclusions changes with time. The precipitous formation of NIIs may play a protective role by removing polyglutamine, while the subsequent growth of NIIs may be deleterious, since it would allow other proteins to be sequestered into inclusions. The formation of ENNIs in neurites and synapses is also more likely to have deleterious than beneficial consequences for a cell. Thus, our study suggests that the relationship between inclusion formation and neurological dysfunction depends not only upon the phenotype of the neurons involved, but also upon the molecular composition and the subcellular localisation of the inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • CARTER, R. J., LIONE, L. A., HUMBY, T., MANGIARINI, L., MAHAL, A., BATES, G. P., MORTON, A. J. & DUNNETT, S. B. (1999) Characterisation of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. Journal of Neuroscience 19, 3248–3257.

    PubMed  Google Scholar 

  • CHA, J-.H. J., FREY, A. S., ALSDORF, S. A., KERNER, J. A., KOSINSKI, C. M., MANGIARINI, L., PENNEY, J. B., DAVIES, S. W., BATES, G. P., & YOUNG, A. B. (1999) Altered brain neurotransmitter receptor expression in transgenic mouse models of Huntington disease Progressive inclusion formation in HD mice 701 gene. Philosophical Transactions of the Royal Society, London B 354, 981–990.

    Google Scholar 

  • CHAI, Y. H., KOPPENHAFER, S. L., SHOESMITH, S. J., PEREZ, M. K., & PAULSON, H. L. (1999) Evidence for proteasome involvement in polyglutamine disease: localisation to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Human Molecular Genetics 8, 673–682.

    PubMed  Google Scholar 

  • CUMMINGS, C. J., REINSTEIN, E., SUN, Y., CIECHANOVER, A., ORR, H. T., BEAUDET, A. L. & ZOGHBI, H. Y. (1999) Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892.

    PubMed  Google Scholar 

  • DAVIES, S. W., TURMAINE, M., COZENS, B. A., DIFIGLIA, M., SHARP, A. H., ROSS, C. A., SCHERZINGER, E., WANKER, E. E., MANGIARINI, L. & BATES, G. P. (1997) Formation of neuronal intranuclear inclusions (NII) underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537–548.

    PubMed  Google Scholar 

  • DAVIES, S. W., TURMAINE, M., COZENS, B. A., RAZA, A. S., MAHAL, A., MANGIARINI, L. & BATES, G. P. (1999) From neuronal inclusions to neurodegeneration: neuropathological investigation of a transgenic mouse model of Huntington's disease. Philosophical Transactions of the Royal Society, London B 354, 971–979.

    Google Scholar 

  • DIFIGLIA, M., SAPP, E., CHASE, K. O., DAVIES, S. W., BATES, G. P., VONSATTEL, J.-P. & ARONIN, N. (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993.

    PubMed  Google Scholar 

  • FERRIGNO, P. & SILVER, P. A. (2000) Polyglutamine expansions: Proteolysis, chaperones and the dangers of promiscuity. Neuron 26, 9–12.

    PubMed  Google Scholar 

  • FLOYD, J. A. & HAMILTON, B. A. (1999) Intranuclear inclusions and the ubiquitin-proteasome pathway: Digestion of a red herring? Neuron 24, 765–766.

    PubMed  Google Scholar 

  • GERFEN, C. R., BAIMBRIDGE, K. G. & MILLER, J. J. (1985) The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proceedings of the National Academy of Sciences USA 82, 8780–8784.

    Google Scholar 

  • GOEDERT, M., SPILLANTINI, M. G. & DAVIES, S. W. (1998) Filamentous nerve cell inclusions in neurodegenerative diseases. Current Opinio Neurobiology 8, 619–632.

    Google Scholar 

  • GOURFINKEL-AN, I., CANCEL, G., DUYCKAERTS, C., FAUCHEUX, B., HAUW, J. J., TROTTIER, Y., BRICE, A., AGID, Y. & HIRSCH, E. C. (1998) Neuronal distribution of intranuclear inclusions in Huntington's disease with adult onset. NeuroReport 9, 1823–1826.

    PubMed  Google Scholar 

  • GUNDERSEN, H. J. G. (1988) The Nucleator. Journal of Microscopy 151, 3–45.

    PubMed  Google Scholar 

  • GUNDERSEN, H. J. G., BAGGER, P., BENDTSEN, T. F., EVANS, S. M., KORBO, L., MARCUSSEN, N., MØLLER, A., NIELSEN, K., NYENGAARD, J. R., SØRENSEN, F. B., VESTERBY, A. & WEST, M. J. (1988) The new stereological tools: disector, fractionator, nucleator and point sampled intercepts, and their use in pathological research and diagnosis. Acta Pathologica Microbiologica Immunologica Scandinavica 96, 857–881.

    Google Scholar 

  • GUTEKUNST, C. A., LI, S. H., YI, H., MULROY, J. S., KUEMMERLE, S., JONES, R., RYE, D., FERRANTE, R. J., HERSCH, S. M. & LI, X. J. (1999) Nuclear and neuropil aggregates in Huntington's disease: Relationship to neuropathology. Journal of Neuroscience 19, 2522–2534.

    PubMed  Google Scholar 

  • HACKAM, A. S., HODGSON, J. G., SINGARAJA, R., ZHANG, T. Q., GAN, L., GUTEKUNST, C. A., HERSCH, S. M. & HAYDEN, M. R. (1999a) Evidence for both the nucleus and cytoplasm as subcellular sites of pathogenesis in Huntington's disease in cell culture and in transgenic mice expressing mutant huntingtin. Philosophical Transactions of the Royal Society, London B 354, 1047–1055.

    Google Scholar 

  • HAZEKI, N., NAKAMURA, K., GOTO, J. & KANAZAWA, I. (1999) Rapid aggregate formation of the huntingtin N-terminal fragment carrying an expanded polyglutamine tract. Biochemical And Biophysical Research Communications 256, 361–366.

    PubMed  Google Scholar 

  • HEDREEN, J. C. & FOLSTEIN, S. E. (1995) Early loss of neostriatal striosome neurones in Huntington's disease. Journal of Neuropathology and Experimental Neurology 54, 105–120.

    PubMed  Google Scholar 

  • HOLMBERG, M., DUYCKAERTS, C., DURR, A., CANCEL, G., GOURFINKEL-AN, I., DAMIER, P., FAUCHEUX, B., TROTTIER, Y., HIRSCH, E. C., AGID, Y. & BRICE, A. (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Human Molecular Genetics 7, 913–918.

    PubMed  Google Scholar 

  • HURLBERT, M. S., ZHOU, W., WASMEIER, C., KADDIS, F. G., HUTTON, J. C. & FREED, C. R. (1999) Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes. Diabetes 48, 649–651.

    PubMed  Google Scholar 

  • JONES, A. L. (1999) The localisation and interactions of huntingtin. Philosophical Transactions of the Royal Society, London B 354, 1021–1027.

    Google Scholar 

  • KEMPERMANN, G., KUHN, H. G. & GAGE, F. H. (1997) More hippocampal neurones in adult mice living in an enriched environment. Nature 386, 493–495.

    PubMed  Google Scholar 

  • KIM, T. W. & TANZI, R. E. (1998) Neuronal intranuclear inclusions in polyglutamine diseases: Nuclear weapons or nuclear fallout? Neuron 21, 657–659.

    PubMed  Google Scholar 

  • KLEMENT, I. A., SKINNER, P. J., KAYTOR, M. D., YI, H., HERSCH, S. M., CLARK, H. B., ZOGHBI, H. Y. & ORR, H. T. (1998) Ataxin-1 nuclear localisation and aggregation: Role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95, 41–53.

    PubMed  Google Scholar 

  • LI, H., LI, S. H., CHENG, A. L., MANGIARINI, L., BATES, G. P., & LI, X. J. (1999) Ultrastructural localisation and progressive formation of neuropil aggregates in Huntington's disease transgenic mice. Human Molecular Genetics 8, 1227–1236.

    PubMed  Google Scholar 

  • LIONE, L. A., CARTER, R. J., BATES, G. P., MORTON, A. J. & DUNNETT, S. B. (1999) Selective discrimination learning impairments in mice expressing the human Huntington's disease mutation. Journal of Neuroscience 19, 10428–10437.

    PubMed  Google Scholar 

  • MANGIARINI, L., SATHASIVAM, K., SELLER, M., COZENS, B., HARPER, A., HETHERINGTON, C., LAWTON, M., TROTTIER, Y., LEHRACH, H., DAVIES, S. W. & BATES, G. P. (1996) Exon 1 of the 702 MORTON, LAGAN, SKEPPER, and DUNNETT HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506.

    PubMed  Google Scholar 

  • MARTINDALE, D., HACKAM, A., WIECZOREK, A., ELLERBY, L., WELLINGTON, C., MCCUTCHEON, K., SINGARAJA, R., KAZEMI-ESFARJANI, P., DEVON, R., KIM, S. U., BREDESEN, D. E., TUFARO, F. & HAYDEN, M. R. (1998) Length of huntingtin and its polyglutamine tract influences localisation and frequency of intracellular aggregates. Nature Genetics 18, 150–154.

    PubMed  Google Scholar 

  • MEZEY, C. V., REDDY, P. H., DEHEJIA, A., POLYMEROPOULOS, M. H., BROWNSTEIN, M. J. & TAGLE, D. A. (2000) Alpha-synuclein immunoreactivity o huntingtin polyglutamine aggregates in striatum and cortex of Huntington's disease patients and transgenic mouse models. Neuroscience Letters 289, 29–32.

    PubMed  Google Scholar 

  • MORTON, A. J., NICHOLSON, L. M. & FAULL, R. L. M. (1993) Compartmental loss of NADPH diaphorase in the human striatum in Huntington's disease. Neuroscience 53, 159–168.

    PubMed  Google Scholar 

  • MURPHY, K. P. S. J., CARTER, R. J., LIONE, L. A., MANGIARINI, L., MAHAL, A., BATES, G. P. DUNNETT, S. B. & MORTON, A. J. (2000) Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for the human Huntington's disease mutation. Journal of Neuroscience 20, 5115–5223.

    PubMed  Google Scholar 

  • NAGAI, Y., ONODERA, O., CHUN, J., STRITTMATTER, W. J. & BURKE, J. R. (1999) Expanded polyglutamine domain proteins bind neurofilament and alter the neurofilament network. Experimental Neurology 155, 195–203.

    PubMed  Google Scholar 

  • ONA, V. O., LI, M., VONSATTEL, J. P. G., ANDREWS, L. J., KHAN, S. Q., CHUNG, W. M., FREY, A. S., MENON, A. S., LI, X. J., STIEG, P. E., YUAN, J., PENNEY, J. B., YOUNG, A. B. & FRIEDLANDER, R. M. (1999) Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Nature 399, 263–267.

    PubMed  Google Scholar 

  • ORDWAY, J. M., TALLAKSEN-GREENE, S., GUTEKUNST, C. A., BERNSTEIN, E. M., CEARLEY, J. A., WIENER, H. W., DURE, L. S., LINDSEY, R., HERSCH, S. M., JOPE, R. S., ALBIN, R. L. & DETLOFF, P. J. (1997) Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 91, 753–763.

    PubMed  Google Scholar 

  • PAXINOS, G. (1995) The Rat Nervous System. San Diego: Academic Press.

    Google Scholar 

  • PEREZ, M. K., PAULSON, H. L., PENDSE, S. J., SAIONZ, S. J., BONINI, N. M. & PITTMAN, R. N. (1998) Recruitment and the role of nuclear localisation in polyglutamine-mediated aggregation. Journal of Cell Biology 143, 1457–1470.

    PubMed  Google Scholar 

  • PERUTZ, M. (1994) Polar zippers-their role in human disease. Protein Science 3, 1629–1637.

    PubMed  Google Scholar 

  • PAULSON, H. L., PEREZ, M. K., TROTTIER, Y., TROJANOWSKI, J. Q., SUBRAMONY, S. H., DAS, S. S., VIG, P., MANDEL, J. L., FISCHBECK, K. H. & PITTMAN, R. N. (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19, 333–344.

    Article  PubMed  Google Scholar 

  • REDDY, P. H., WILLIAMS, M. & TAGLE, D. A. (1999) Recent advances in understanding the pathogenesis of Huntington's disease. Trends in Neuroscience 22, 248–255.

    Google Scholar 

  • REYNOLDS, G. P., DALTON, C. F., TILLERY, C. L., MANGIARINI, L., DAVIES, S. W. & BATES, G. P. (1999) Brain neurotransmitter deficits in mice transgenic for the Huntington's disease mutation. Journal of Neurochemistry 72, 1773–1776.

    PubMed  Google Scholar 

  • SANCHEZ, I., XU, C. J., JUO, P., KAKIZAKA, A., BLENIS, J. & YUAN, J. Y. (1999) Caspase-8 is required for cell death induced by expanded polyglutamine repeats. Neuron 22, 623–633.

    PubMed  Google Scholar 

  • SAUDOU, F., FINKBEINER, S., DEVYS, D. & GREENBERG, M. E. (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55–66.

    PubMed  Google Scholar 

  • SCHERZINGER, E., LURZ, R., TURMAINE, M., MANGIARINI, L., HOLLENBACH, B., HASENBANK, R., BATES, G. P., DAVIES, S. W., LEHRACH, H. & WANKER, E. E. (1997) Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90, 549–558.

    PubMed  Google Scholar 

  • SISODIA, S. S. (1998) Nuclear inclusions in glutamine repeat disorders: Are they pernicious, coincidental, or beneficial? Cell 95, 1–4.

    PubMed  Google Scholar 

  • SITTLER, A., WALTER, S., WEDEMEYER, N., HASENBANK, R., SCHERZINGER, E., EICKHOFF, H., BATES, G. P., LEHRACH, H. & WANKER, E. E. (1998) SH3GL3 associates with the huntingtin exon 1 protein and promotes the formation of poly gln-containing protein aggregates. Molecular Cell 2, 427–436.

    PubMed  Google Scholar 

  • STENOIEN, D. L., CUMMINGS, C. J., ADAMS, H. P., MANCINI, M. G., PATEL, K., DEMARTINO, G. N., MARCELLI, M., WEIGEL, N. L. & MANCINI, M. A. (1999) Polyglutamine-expanded androgen receptors form aggregates that sequester heat shock proteins, proteasome components and SRC-1, and are suppressed by the HDJ-2 chaperone. Human Molecular Genetics 2, 731–741.

    Google Scholar 

  • STERIO, D. C. (1984) The unbiased estimation of number and sizes of arbitrary particles using the disector. Journal of Microscopy, 1341: 127–136.

    Google Scholar 

  • VONSATTEL, J.-P., MYERS, R. H. & STEVENS, T. J. (1985) Neuropathologic classification of Huntington's disease. Journal of Neuropathology and Experimental Neurology 44, 559–577.

    PubMed  Google Scholar 

  • WARRICK, J. M., PAULSON, H. L., GRAY-BOARD, G. L., BUI, Q. T., FISCHBECK, K. H., PITTMAN, R. N. & BONINI, N. M. (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93, 939–949.

    PubMed  Google Scholar 

  • YAMAMOTO, A., LUCAS, J. J. & HEN, R. (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Cell 31, 57–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morton, A.J., Lagan, M.A., Skepper, J.N. et al. Progressive formation of inclusions in the striatum and hippocampus of mice transgenic for the human Huntington's disease mutation. J Neurocytol 29, 679–702 (2000). https://doi.org/10.1023/A:1010887421592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010887421592

Keywords

Navigation