Skip to main content
Log in

Titanium-Substituted Heteropolytungstates as Model Catalysts for Studying the Mechanisms of Selective Oxidation by Hydrogen Peroxide

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The 31P NMR method shows that four forms of titanium(IV)-monosubstituted Keggin-type heteropolytungstate (Ti–HPA) exist in MeCN: the dimer (Bu4N)7[{PTiW11O39}2OH] (in the abbreviated form, (PW11Ti)2OH or H1), its conjugate base (PW11Ti)2O (1), and two monomers, PW11TiO (2) and PW11TiOH (H2). The ratio between the forms depends on the concentrations of H+and H2O. Dimer H1is produced from 2in MeCN when H+(1.5 mol) is added, and monomer H2is the key intermediate in this process. The catalytic activity of Ti–HPA in the oxidation of thioethers by H2O2correlates with their activity in peroxo complex formation and decreases in the order H2> H1> 2. The reaction of 2with H2O2in MeCN occurs slowly to form the inactive peroxo complex PW11TiO2(A). The addition of H2O2to H1and H2most likely results in the formation of the active hydroperoxo complex PW11TiOOH (B). Complexes Aand Btransform into each other when H+or OH(1 mol) is added per 1 mol of Aor B, respectively. The activity of Btoward thioethers in the stoichiometric reaction is proven by 31PNMR and optical spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill, C.L. and Prosser-McCartha, C.M., Coord. Chem. Rev., 1995, vol. 143, p. 407.

    Google Scholar 

  2. Kholdeeva, O.A., Grigoriev, V.A., Maksimov, G.M., and Zamaraev, K.I., Top. Catal., 1996, vol. 3, p. 313.

    Google Scholar 

  3. Duprey, E., Beaunier, P., Springuel-Huet, M.-A., et al., J. Catal., 1997, vol. 165, p. 22.

    Google Scholar 

  4. Zecchina, A., Bordiga, S., Lamberti, C., et al., Catal. Today, 1996, vol. 32, p. 97.

    Google Scholar 

  5. Karlsen, E. and Schoffel, K., Catal. Today, 1996, vol. 32, p. 107.

    Google Scholar 

  6. Talsi, E.P. and Babushkin, D.E., J. Mol. Catal. A: Chem., 1996, vol. 106, p. 179.

    Google Scholar 

  7. Kholdeeva, O.A., Maksimov, G.M., Maksimovskaya, R.I., et al., Inorg. Chem., 2000, vol. 39, no. 17, p. 3828.

    Google Scholar 

  8. Kholdeeva, O.A., Maksimovskaya, R.I., Maksimov, G.M., and Zamaraev, K.I., React. Kinet. Catal. Lett., 1998, vol. 63, no. 1, p. 95.

    Google Scholar 

  9. Reddy, R.S., Reddy, J.S., Kumar, R., and Kumar, P., J. Chem. Soc., Chem. Commun., 1992, p. 84.

  10. Trukhan, N.N., Derevyankin, A.Yu., Shmakov, A.N., et al., Micropor. Mesopor. Mater. (in press).

  11. Kholdeeva, O.A., Maksimov, G.M., Maksimovskaya, R.I., et al., React. Kinet. Catal. Lett., 1999, vol. 66, no. 2, p. 311.

    Google Scholar 

  12. Tourné, C. and Tourné, G., Bull. Soc. Chim. Fr., 1969, p. 1124.

  13. Maksimov, G.M., Kuznetsova, L.I., Matveev, K.I., and Maksimovskaya, R.I., Koord. Khim., 1985, vol. 11, no. 10, p. 1353.

    Google Scholar 

  14. Doeuff, S., Dromzee, Y., Taulelle, F., and Sanchez, C., Inorg. Chem., 1989, vol. 28, p. 4439.

    Google Scholar 

  15. Mimoun, H., Postel, M., Casabianca, F., Fisher, J., and Mitschler, A., Inorg. Chem., 1982, vol. 21, p. 1303.

    Google Scholar 

  16. Di Furia, F. and Modena, G., Pure Appl. Chem., 1982, vol. 54, no. 10, p. 1853.

    Google Scholar 

  17. Ballistreri, F.P., Bazzo, A., Tomaselli, G., and Toscano, R.M., J. Org. Chem., 1992, vol. 57, p. 7074.

    Google Scholar 

  18. Baciocchi, E., Lanzalunga, O., and Malandrucco, S., J. Am. Chem. Soc., 1996, vol. 118, p. 8973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kholdeeva, O.A., Maksimovskaya, R.I., Maksimov, G.M. et al. Titanium-Substituted Heteropolytungstates as Model Catalysts for Studying the Mechanisms of Selective Oxidation by Hydrogen Peroxide. Kinetics and Catalysis 42, 217–222 (2001). https://doi.org/10.1023/A:1010465317943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010465317943

Keywords

Navigation