Skip to main content
Log in

Transition State of Heat Denaturation of Methionine Aminopeptidase from a Hyperthermophile

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Heat denaturation of methionine aminopeptidase from a hyperthermophile Pyrococcus furiosus (PfMAP) was studied by differential scanning calorimetry at acid pH. Analysis of the calorimetric data has shown that denaturation of PfMAP is non-equilibrium at heating rates from 0.125 to 2 K min–1. This means that the protein structure at these conditions is metastable and its stability (the apparent temperature of denaturation T m) is under kinetic control. It was shown that heat denaturation of this protein is a one-step kinetic process. The enthalpy of the process and its activation energy were measured as functions of temperature. The obtained data allowed us to estimate the heat capacity increment and the change in the number of bound protons during activation of the molecule. The data also suggest that the conformation of PfMAP at the transition state only slightly differs from its native conformation with respect to compactness, hydration extent and hydroxyl protonation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Privalov, Adv. Protein Chem., 33 (1979) 167.

    CAS  Google Scholar 

  2. P. L. Privalov and S. A. Potekhin, Methods in Enzymology, 131 (1986) 1.

    Article  Google Scholar 

  3. E. Freire and R. L. Biltonen, Biopolymers, 17 (1978) 463.

    Article  CAS  Google Scholar 

  4. P. L. Privalov, Adv. Protein Chem., 35 (1982) 1.

    CAS  Google Scholar 

  5. S.-J. Kidokoro and A. Wada, Biopolymers, 26 (1987) 213.

    Article  CAS  Google Scholar 

  6. D. E. McRee, S. M. Redford, E. D. Getzoff, J. R. Lepock, R. A. Hallewell and J. A. Tainer, J. Biol. Chem., 265 (1990) 14234.

    CAS  Google Scholar 

  7. B. Chen and J. King, Biochemistry, 30 (1991) 6260.

    Article  CAS  Google Scholar 

  8. F. Conejro-Lara, J. M. Sanchez-Ruiz, P. L. Mateo, F. J. Burgos, J. Vandrell and F. X. Aviles, Eur. J. Biochem., 200 (1991) 663.

    Article  Google Scholar 

  9. M. L. Galisteo, P. L. Mateo and J. M. Sanchez-Ruiz, Biochemistry, 30 (1991) 2061.

    Article  CAS  Google Scholar 

  10. E. Freire, W. W. van Osdol, O. L. Mayorga and J. M. Sanchez-Ruiz, Annu. Rev. Biophys. Chem., 19 (1990) 159.

    Article  CAS  Google Scholar 

  11. J. R. Lepock, K. P. Ritchie, M. C. Kolios, A. M. Robahl, K. A. Heinz and J. Kruuv, Biochemistry, 31 (1992) 12706.

    Article  CAS  Google Scholar 

  12. J. M. Sanchez-Ruiz, Biophys. J., 61 (1992) 921.

    CAS  Google Scholar 

  13. D. Milardi, C. La Rosa and D. Grasso, Biophys. Chem., 52 (1994) 183.

    Article  CAS  Google Scholar 

  14. S. A. Potekhin and E. L. Kovrigin, Biofizika (Russia), 43 (1998) 223.

    CAS  Google Scholar 

  15. S. Segawa and M Sugihara, Biopolymers, 23 (1984) 2473.

    Article  CAS  Google Scholar 

  16. S. F. Jackson and A. R. Fersht, Biochemistry, 30 (1991) 10428.

    Article  CAS  Google Scholar 

  17. M. Oliveberg and A. R. Fersht, Biochemistry, 35 (1996) 2738.

    Article  CAS  Google Scholar 

  18. T. Schindler and F. X. Schmid, Biochemistry, 35 (1996) 16833.

    Article  CAS  Google Scholar 

  19. S. A. Potekhin, O. I. Loseva, E. I. Tiktopulo and A. P. Dobritsa, Biochemistry, 38 (1999) 4121.

    Article  CAS  Google Scholar 

  20. K. Ogasahara, E. A. Lapshina, M. Sakai, Y. Izu, S. Tsunasawa, I. Kato and K. Yutani, Biochemistry, 37 (1998) 5939.

    Article  CAS  Google Scholar 

  21. J. M. Sanchez-Ruiz, J. L. Lopez-Lacomba, M. Cortijo and P. L. Mateo, Biochemistry, 27 (1988) 1648.

    Article  CAS  Google Scholar 

  22. T. Vogl, C. Jatzke, H.-J. Hinz, J. Benz and R. Huber, Biochemistry, 36 (1997) 1657.

    Article  CAS  Google Scholar 

  23. S. A. Potekhin and E. L. Kovrigin, Biophys. Chem., 73 (1998) 241.

    Article  CAS  Google Scholar 

  24. B. Chen, W. Baase and J. A. Shellman, Biochemistry, 28 (1989) 691.

    Article  CAS  Google Scholar 

  25. M. Oliveberg and A. R. Fersht, Biochemistry, 35 (1996) 2726.

    Article  CAS  Google Scholar 

  26. P. L. Privalov and N. N. Khechinashvili, J. Mol. Biol., 86 (1974) 665.

    Article  CAS  Google Scholar 

  27. Y.-J. Tan, M. Oliveberg and A. R. Fersht, J. Mol. Biol., 264 (1996) 377.

    Article  CAS  Google Scholar 

  28. C. Tanford, Adv. Protein Chem., 24 (1970) 1.

    Article  CAS  Google Scholar 

  29. C. Tanford, Adv. Protein Chem., 24 (1962) 69.

    Google Scholar 

  30. T. Creighton, Proteins, W. H. Freeman and Company, New York 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potekhin, S.A., Ogasahara, K. & Yutani, K. Transition State of Heat Denaturation of Methionine Aminopeptidase from a Hyperthermophile. Journal of Thermal Analysis and Calorimetry 62, 111–122 (2000). https://doi.org/10.1023/A:1010114828690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010114828690

Navigation