Skip to main content
Log in

Phosphorylation of Bcl-2 and Bax Proteins during Hypoxia in Newborn Piglets

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Studies indicate that phosphorylated Bcl-2 cannot form a heterodimer with Bax and thus may lose its antiapoptotic potential. The present study tests the hypothesis that graded hypoxia in cerebral tissue induces the phosphorylation of Bcl-2, thus altering the heterodimerization of Bcl-2 with Bax and subsequently leading to apoptosis. Anesthetized, ventilated newborn piglets were assigned to a normoxic and a graded hypoxic group. Cerebral cortical neuronal nuclei were isolated and immunoprecipitated; immune complexes were separated and reacted with Bcl-2 and Bax specific antibodies. The results show an increased level of serine/tyrosine phosphorylated Bcl-2 in nuclear membranes of hypoxic animals. The level of phosphorylated Bcl-2 protein increased linearly with decrease in tissue PCr. The level of phosphorylated Bax in the neuronal nuclear membranes was independent of cerebral tissue PCr. The data shows that during hypoxia, there is increased phosphorylation of Bcl-2, which may prevent its heterodimerization with Bax and lead to increased proapoptotic activity due to excess Bax in the hypoxic brain. Further increased phosphorylation of Bcl-2 may alter the Bcl-2/Bax-dependent antioxidant, lipid peroxidation and pore forming activity, as well as the regulation of intranuclear Ca2+ and caspase activation pathways. We speculate that increased phosphorylation of Bcl-2 in neuronal nuclear membranes is a potential mechanism of programmed cell death activation in the hypoxic brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rosenbaum, D. M., Michaelson, M., Batter, D. K., Doshi, P., and Kessler, J. A. 1994. Evidence for hypoxia-induced, programmed cell death of cultured neurons. Ann. Neurol. 36:864–870.

    PubMed  Google Scholar 

  2. Charriaut-Marlangue, C., Margaill, I., Plotkine, M., and Ben-Ari, Y. 1995. Early endonuclease activation following reversible focal ischemia in the rat brain. J. Cereb. Blood Flow Metab. 15:385–388.

    PubMed  Google Scholar 

  3. Dragunow, M., Beilharz, E., Sirimane, E., Lawlor, P., Williams, C., Bravo, R., and Gluckman, P. 1994. Immediate-early gene protein expression in neurons undergoing delayed death, but not necrosis, following hypoxic-ischemic injury to the young rat brain. Molec. Brain Res. 25:19–33.

    PubMed  Google Scholar 

  4. Gillardon, F., Lenz, C., Kuschinsky, W., and Zimmermann, M. 1996. Evidence for apoptotic cell death in the choroid plexus following focal cerebral ischemia. Neurosci. Lett. 207:113–116.

    PubMed  Google Scholar 

  5. Linnik, M. D., Zobrist, R. H., and Hatfield, M. D. 1993. Evidence supporting a role for programmed cell death in the focal cerebral ischemia in rats. Stroke 24:2002–2008.

    PubMed  Google Scholar 

  6. McManus, J. P., Hill, I. E., Rasquinha, I., Walker, T., and Buchan, A. M. 1995. Differences in DNA fragmentation following transient cerebral or decapitation ischemia in rats. J. Cereb. Blood Flow Metab. 15:728–737.

    PubMed  Google Scholar 

  7. Ferrer, I., Tortosa, A., Macaya, A., Sierra, A., Moreno, D., Munell, F., Blanco, R., and Squier, W. 1994. Evidence of nuclear DNA fragmentation following hypoxia-ischemia in the infant rat brain, and transient forebrain ischemia in the adult gerbil. Brain Pathol. 4:115–122.

    PubMed  Google Scholar 

  8. Honkaniemi, J., Massa, S. M., Breckinridge, M., and Sharp, F. R. 1996. Global ischemia induces apoptosis-associated genes in hippocampus. Molec. Brain Res. 42:79–88.

    PubMed  Google Scholar 

  9. Kihara, S., Shiraishi, T., Nakagawa, S., Toda, K., and Tabuchi K. 1994. Visualization of DNA double strand breaks in the gerbil hippocampal CA1 following transient ischemia. Neurosci. Lett. 175:133–136.

    PubMed  Google Scholar 

  10. Kitada, S., Krajewski, S., Miyashita, T., Krajewski, M., and Reed, J. C. 1996. Gamma-radiation induces upregulation of Bax protein and apoptosis in radiosensitive cells in vivo. Oncogene 12:187–192.

    PubMed  Google Scholar 

  11. Mehmet, H., Yue, X., Squier, M. V., Lorek, A., Cady, E., Penrice, J., Sarraf, C., Wylezinska, M., Kirkbride, V., Cooper, C., Brown, J. C., Wyatt, J. S., Reynolds, E. O. R., and Edwards, A. D. 1994. Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia-ischemia is related to the degree of high energy phosphate depletion during the insult. Neurosci. Lett. 181:121–125.

    PubMed  Google Scholar 

  12. Nitatoru, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama Y. 1995. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci. 15:1001–1011.

    PubMed  Google Scholar 

  13. Sei, Y., Vonlubitz, D. K. E., Basile, A. S., Borner, M. M., Lin, R. C. S., Skolnick, P., and Fossom, L. H. 1994. Internucleosomal DNA fragmentation in the gerbil hippocampus following forebrain ischemia. Neurosci. Lett. 171:179–182.

    PubMed  Google Scholar 

  14. Raff, M. C. 1992. Social controls on cell survival and cell death. Nature 356:397–400.

    PubMed  Google Scholar 

  15. Chao, D. T. and Korsemeyer, S. J. 1998. Bcl-2 family: regulators of cell death. Annu. Rev. Immunol. 16:395–419.

    PubMed  Google Scholar 

  16. Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74:609–619.

    PubMed  Google Scholar 

  17. St. Clair, E. G., Anderson, S. J., and Oltvai, Z. N. 1997. Bcl-2 counters apoptosis by bax heterodimerization-dependent and-independent mechanisms in the T-cell lineage. J. Biol. Chem. 272:29347–29355.

    PubMed  Google Scholar 

  18. Ito, T., Deng, X., Carr, B., and May, W. S. 1997. Bcl-2 phosphorylation required for anti-apoptosis function. J. Biol. Chem. 272:11671–11673.

    PubMed  Google Scholar 

  19. Blagosklonny, M. V., Giannakakou, P., El-Deiry, W. S., Kingston, D. G., Higgs, P. I., Neckers, L., and Fojo, T. 1997. Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 57:130–135.

    PubMed  Google Scholar 

  20. Haldar, S., Chintapalli, J., and Croce, C. M. 1996. Taxol induces Bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 56:1253–1255.

    PubMed  Google Scholar 

  21. Hu, Z. B., Minden, M. D., and McCulloch, E. A. 1998. Phosphorylation of Bcl-2 after exposure of human leukemic cells to retinoic acid. Blood 92:1768–1775.

    PubMed  Google Scholar 

  22. Hara, A., Hirose, Y., Wang, A., Yoshimi, N., Tanaka, T., and Mori, H. 1996. Localization of Bax and Bcl-2 proteins, regulators of programmed cell death, in the human central nervous system. Virchows Arch. 429:249–253.

    PubMed  Google Scholar 

  23. Jacobson, M. D., Burne, J. F., King, M. P., Miyashita, T., Reed, J. C., and Raff, M. C. 1993. Apoptosis and Bcl-2 protein in cells without mitochondrial DNA. Nature 361:365–368.

    PubMed  Google Scholar 

  24. Krajewski, S., Tanaka, S., Takayama, S., Schibler, M. J., Fenton, W., and Reed, J. C. 1993. Investigations of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial protein membranes. Cancer Res. 53:4701–4714.

    PubMed  Google Scholar 

  25. Miyashita, T. and Reed, J. C. 1993. Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81:151–157.

    PubMed  Google Scholar 

  26. Monaghan, P., Robertson, D., Amos, A. S., Dyer, M. J. S., Mason, D. Y., and Greaves, M. F. 1992. Ultrastructural localization of Bcl-2 protein. J. Hisochem. Cytochem. 40:1819–1825.

    Google Scholar 

  27. Reed, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6.

    PubMed  Google Scholar 

  28. Reed, J. C. 1996. Mechanism of Bcl-2 family protein function and dysfunction in health and disease. Behring Inst. Mitt. 97: 72–100.

    PubMed  Google Scholar 

  29. Hoetelmans, R., Van Slooten, H. J., Keijzer, R., Erkeland, S., Vande Velde, C. J., and Dierendonck, J. H. 2000. Bcl-2 and Bax proteins are present in interphase nuclei of Mamallian cells. Cell Death Differ. 7:384–392.

    PubMed  Google Scholar 

  30. Wang, Z. H., Ding, M. X., Chew-Cheng, S. B., Yun, J. P., and Chew, E. C. 1999. Bcl-2 and Bax proteins are nuclear matrix associated proteins. AntiCancer Res. 19:5445–5449.

    PubMed  Google Scholar 

  31. Marin, M. C., Fernandez, A., Bick, R. J., Brisbay, S., Buja, L. M., Snuggs, M., McConkey, D. J., von Eschenbach, A. C., Keating, M. J., and McDonnell, A. T. J. 1996. Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca2+. Oncogene 12:2259–2266.

    PubMed  Google Scholar 

  32. Giuffrida, A. M., Cox, D., and Mathias, A. P. 1975. RNA polymerase activity in various classes of nuclei from different regions of rat brain during postnatal development. J. Neurochem. 24:749–755.

    PubMed  Google Scholar 

  33. Lowry, O., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  34. Lamprecht, W., Stein, P., Heinz, F., and Weissner, H. 1974. Creatine phosphate. Methods of Enzymatic Analysis (ed. Bergmeyer H. U.), Vol. 4. Pages 1777–1781. Academic Press, New York.

    Google Scholar 

  35. Krajewski, S., Krajewski, M., Shaibaik, A., Miyashita, T., Wang, H. G., and Reed, J. C. 1994. Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am. J. Pathol. 145:1323–1336.

    PubMed  Google Scholar 

  36. Merry, D. E., Veis, E. D. J., Hickey, W., and Korsmeyer, S. J. 1994. Bcl-2 protein expression is widespread in the developing nervous system and retained in the adult PNS. Development 120:301–311.

    PubMed  Google Scholar 

  37. Chinnaiyan, A. M., O'Rourke, K., Lane, B. R., and Dixit, V. M. 1997. Interaction of CED-4 with CED-3 with CED-9: A molecular framework for cell death. Science 275:1122–1126.

    PubMed  Google Scholar 

  38. Goldstein, P. 1997. Controlling cell death. Science 275:1081–1082.

    PubMed  Google Scholar 

  39. Gillardon, F., Lenz, C., Waschke, K. F., Krajewski, S., Reed, J. C., Zimmermann, M., and Kuschinsky, W. 1996. Altered expression of Bcl-2, Bcl-x, Bax, and c-Fos colocalizes with DNA fragmentation and ischemic cell damage following middle cerebral artery occlusion in rats. Molec. Brain Res. 40:254–260.

    PubMed  Google Scholar 

  40. Yin, X. M., Oltvai, Z. N., and Korsemeyer, S. J. 1994. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323.

    PubMed  Google Scholar 

  41. Chen. J., Graham, S. H., Chan, P. H., Lan, J. Q., Zhou, G. J., and Simon, R. P. 1995. Bcl-2 is expressed in neurons that survive focal ischemia in rat. NeuroReport. 6:394–398.

    PubMed  Google Scholar 

  42. Chen, J., Zhu, R. L., Nakayama, M., Kawaguchi, K., Jin, K., Stetler, R. A., Simon, R. P., and Graham, S. H. 1996. Expression of the apoptosis-Effector Gene, Bax is up regulated in vulnerable hippocampal CA1 neurons following global ischemia, J. Neurochem. 67:64–71.

    PubMed  Google Scholar 

  43. Martinou, J. C., Dubois-Dauphin, M., Staple, K. J., Rodriguez, I., Frankowski, H., Missoten, M., Albertini, P., Talabot, D., Catsicas, S., Pietra, C., and Huarte, J. 1994. Overexpression of Bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 3:1017–1030.

    Google Scholar 

  44. Shimazaki, K., Ishada, A., and Kawai, N. 1994. Increase in Bcl-2 oncoprotein and the tolerance to ischemia-induced neuronal death in the gerbil hippocampus. Neurosci. Res. 20:95–99.

    PubMed  Google Scholar 

  45. Zhan, Q., Fan, S. B., Guillof, C., Kieberman, D. A., O'Connor, P. M., and Fornace, A. J. 1994. Induction of bax by genotoxic stress in human cells correlates with normal p53 status. Oncogene 9:3743–3751.

    PubMed  Google Scholar 

  46. Zhong, L. T., Sarafian Tkane, D. J., Charles, A. C., Mah, S. P., Edwards, R. H., and Bredesen, D. E. 1993. Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl. Acad. Sci. USA 90:4533–4537.

    PubMed  Google Scholar 

  47. Ling, Y. H., Tornos, C., and Perez-Soler, R. 1998. Phosphorylation of Bcl-2 is a marker of M phase events and not determinant of apoptosis. J. Biol. Chem. 273:18984–18991.

    PubMed  Google Scholar 

  48. Zha, J., Harada, H., Jockel, J., and Korsmeyer, S. J. 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3–3 not BCL-X. Cell 87: 619–628.

    PubMed  Google Scholar 

  49. Hockenberry, D. M., Oltvai, Z. N., Yin, X. M., Milliman, C. L., and Korsmeyer, S. J. 1993. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251.

    PubMed  Google Scholar 

  50. Haldar, S., Jena, N., and Croce, C. M. 1995. Inactivation of Bcl-2 by phosphorylation. Proc. Natl. Acad. Sci USA 92: 4507–4511.

    PubMed  Google Scholar 

  51. Mishra, O. P. and Delivoria-Papadopoulos, M. 1989. Lipid peroxidation in developing fetal guinea pig brain during normoxia and hypoxia. Dev. Brain Res. 45:129–135.

    Google Scholar 

  52. Numagami, Y., Zubrow, A. B., Mishra, O. P., and Delivoria-Papadopoulos, M. 1997. Lipid free radical generation and brain cell membrane alteration following nitric oxide synthase inhibition during cerebral hypoxia in the newborn piglets. J. Neurochem. 69:1542–1547.

    PubMed  Google Scholar 

  53. Razdan, B., Marro, P. J., Tammela, O., Goel, R., Mishra, O. P., and Delivoria-Papadopoulos, M. 1993. Selective sensitivity of synaptosomal membrane function to cerebral cortical hypoxia in newborn piglets. Brain Res. 600:308–314.

    PubMed  Google Scholar 

  54. Fritz, K. I., Groenendaal, F., McGowan, J. E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1996. Effects of 3-(2-carboxypiperzine-4-yl) propyl-1-phosphonic acid (CPP) on NMDA receptor binding characteristics and brain cell membrane function during cerebral hypoxia in newborn piglets. Brain Res. 729: 66–74.

    PubMed  Google Scholar 

  55. Mishra O. P. and Delivoria-Papadopoulos M. 1992. NMDA receptor modification of the fetal guinea pig brain during hypoxia. Neurochem. Res. 17:1211–1216.

    PubMed  Google Scholar 

  56. Zanelli, S. A., Numagami, Y., McGowan, J.E., Mishra, O. P., and Delivoria-Papadopoulos, M. 1999. NMDA receptor-mediated calcium influx in cerebral cortical synaptosomes of the hypoxic guinea pig fetus. Neurochem. Res. 24:437–446.

    PubMed  Google Scholar 

  57. Maulik, D., Yoshihiro, N., Ohnishi, S. T., Mishara, O. P., and Delivoria-Papadopoulos, M. 1998. Direct measurement of oxygen free radicals during in utero hypoxia in the fetal guinea pig brain. Brain. Res. 798:166–172.

    PubMed  Google Scholar 

  58. May, W. S., Tyler, P. G., Ito, T., Armstrong, D. K., Qatsha, K. A., and Davidson, N. E. 1994. Interleukin-3 and bryostatin-1 mediate hyperphosphorylation of Bcl-2 in association with suppression of apoptosis. J. Biol. Chem. 269:26865–26870.

    PubMed  Google Scholar 

  59. Wei, H., Wei, W., Bredsen, D. E., and Perry, C. D. 1998. Bcl-2 protects against apoptosis in neuronal cell line caused by thapsigarigin-induced depletion of intracellular calcium stores. J. Neurochem. 70:2305–2314.

    PubMed  Google Scholar 

  60. Antonsson, B., Conti, F., Ciavetta, A., Montessuit, S., Lewis, S., Martinou, I., Bernasconi, L., Bernard, A., Mermod, J. J., Mazzei, G., Maundrell, K., Gambale, F., Sadoul, R., and Martinou, J. C. 1997. Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, Q.M., Zanelli, S.A., Mishra, O.P. et al. Phosphorylation of Bcl-2 and Bax Proteins during Hypoxia in Newborn Piglets. Neurochem Res 26, 1–9 (2001). https://doi.org/10.1023/A:1007654912421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007654912421

Navigation