Advertisement

Journal of Atmospheric Chemistry

, Volume 38, Issue 3, pp 317–344 | Cite as

An Assessment of HOx Chemistry in the Tropical Pacific Boundary Layer: Comparison of Model Simulations with Observations Recorded during PEM Tropics A

  • G. Chen
  • D. Davis
  • J. Crawford
  • B. Heikes
  • D. O'Sullivan
  • M. Lee
  • F. Eisele
  • L. Mauldin
  • D. Tanner
  • J. Collins
  • J. Barrick
  • B. Anderson
  • D. Blake
  • J. Bradshaw
  • S. Sandholm
  • M. Carroll
  • G. Albercook
  • A. Clarke
Article

Abstract

Reported are the results from a comparison of OH,H2O2CH3OOH, and O3 observationswithmodel predictions based on current HOx–CH4reaction mechanisms. The field observations are thoserecorded during the NASA GTE field program, PEM-Tropics A. The major focus ofthis paper is on thosedata generated on the NASA P-3B aircraft during a mission flown in the marineboundary layer (MBL) nearChristmas Island, a site located in the central equatorial Pacific (i.e.,2° N, 157° W). Taking advantage of thestability of the southeastern trade-winds, an air parcel was sampled in aLagrangian mode over a significantfraction of a solar day. Analyses of these data revealed excellent agreementbetween model simulated andobserved OH. In addition, the model simulations reproduced the major featuresin the observed diurnalprofiles of H2O2 and CH3OOH. In the case ofO3, the model captured the key observational feature whichinvolved an early morning maximum. An examination of the MBL HOxbudget indicated that the O(1D) + H2Oreaction is the major source of HOx while the major sinks involveboth physical and chemical processes involving the peroxide species,H2O2 and CH3OOH. Overall, the generally goodagreement between modeland observations suggests that our current understanding ofHOx–CH4 chemistry in the tropical MBL isquite good; however, there remains a need to critically examine this chemistrywhen both CH2O and HO2are added to the species measured.

hydroxyl radical marine boundary layer peroxides photochemistry tropical Pacific 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B., Galbally, I. E., C. M. Meyer, Elsworth, M., Bentley, S. T., and Forgan, B. W., 1992: Photochemical production of hydrogen peroxides and destruction of ozone in marine air over the southern ocean, Nature 360, 446-449.Google Scholar
  2. Ayers, G. P., Penkett, S. A., Gillett, R. W., Bandy, B. J., Galbally, I. E., Meyer, C. P., Elsworth, M., Bentley, S. T., and Forgan, B. W., 1996: Annual cycle of peroxides and ozone in marine air at Cape Grim, Tasmania, J. Atmos. Chem. 23, 221-252.Google Scholar
  3. Bradshaw, J., Davis, D., Crawford, J., Chen, G., Shetter, R., Müller, M., Gregory, G. Sachse, G., Barrick, J., Blake, D., Heikes, B., Mastromarino, J., and Sandholm, S., 1999: Photofragmentation two-photon laser-induced fluorescence detection of NO2 and NO: Comparison of measurements with model results based on airborne observations during PEM-Tropics A Geophys. Res. Lett. 26, 471-474.Google Scholar
  4. Brune, W. H., Faloona, I. C., Tan, D., Weinheimer, A. J., Campos, T., Ridley, B. A., Vay, S. A., Collins, J. E., Sachse, G. W., Jaeglé, L., and Jacob, D. J., 1998: Airborne in situ OH and HO2 observations in the cloud-free troposphere and stratosphere during SUCCESS, Geophys. Res. Lett. 25, 1701-1704.Google Scholar
  5. Cantrell, C. A., Shetter, R. E., Gilpin, T. M., Calvert, J. G., Eisele, F. L., and Tanner, D. J., 1996: Peroxy radical concentrations measured and calculated from trace gas measurements in the Mauna Loa observatory photochemistry experiment 2, J. Geophys. Res. 101, 14,653-14,664.Google Scholar
  6. Chameides, W. L. and Davis, D. D., 1982: The free radical chemistry of cloud droplets and its impact upon the composition of rain, J. Geophys. Res. 87, 4863-4877.Google Scholar
  7. Chameides W. L., 1984: The photochemistry of a remote marine stratiform cloud, J. Geophys. Res., 89, 4739-4755.Google Scholar
  8. Chameides W. L., Davis, D. D., Bradshaw, J. D., Sandholm, S., Rodgers, M. O., Baum, B., Ridley, R., G., Carroll, M. A., Gregory, G., Schiff, H., Hastie, D. B., Torres, A., and Condon, E., 1990: Observed and model-calculated NO2/NO ratios in tropospheric air sampled during the NASA GTE/CITE 2 field study, J. Geophys. Res. 95, 10,235-10,247.Google Scholar
  9. Chameides, W. L. and Stelson, A. W., 1992: Aqueous-phase chemical processes in deliquescent seasalt aerosols: A mechanism that couples the atmospheric cycles of S and sea salt, J. Geophys. Res. 97, 20,565-20,580.Google Scholar
  10. Chen, G., 1995: A study of tropospheric photochemistry in the subtropical/tropical North and South Atlantic, Dissertation, PhD Thesis, Georgia Inst. of Tech., Atlanta GA.Google Scholar
  11. Clarke, A. D., Li, Z., and Litchy, M., 1996: Aerosol dynamics in the equatorial Pacific marine boundary layer: Microphysics, diurnal cycles, and entraiment, Geophys. Res. Lett. 23, 733-736.Google Scholar
  12. Clarke A. D., Eisele, F., Kapustin, V. N., Moore, K., Tanner, D., Mauldin, L., Litchy, M., Lienert, B., Carroll, M. A., and Albercook, G., 1999: Nucleation in the equatorial free troposphere: Favorable environments during PEM-Tropics, J. Geophys. Res. 104, 5735-5744.Google Scholar
  13. Crawford, J., Davis, D., Chen, G., Bradshaw, J., Sandholm, S., Gregory, G., Sachse, G., Anderson, B., Collins, J., Blake, D., Singh, H., Heikes, B., Talbot, R., and Rodriguez, J., 1996: Photostationary state analysis of the NO2-NO system based on airborne observations from the western and central North Pacific, J. Geophys. Res. 101, 2053-2072.Google Scholar
  14. Crawford, J., Davis, D. D., Chen, G., Bradshaw, J., Sandholm, S., Kondo, Y., Merrill, J., Liu, S., Browell, E., Gregory, G., Anderson, B., Sachse, G., Barrick, J., Blake, D., Talbot, R., and Pueschel, R., 1997a: Implications of large scale shifts in tropospheric NO, levels in the remote tropical Pacific, J. Geophys. Res. 102, 28,447-28,468.Google Scholar
  15. Crawford, J. H., Davis, D. D., Chen, G., Bradshaw, J., Sandholm, S., Kondo, Y., Liu, S., Browell, E., Gregory, G., Anderson, B., Sachse, G., Collins, J., Barrick, J., Blake, D., Talbot, R., and Singh, H., 1997b: An assessment of ozone photochemistry in the extratropical western north Pacific: Impact of continental outflow during the late winter/earlier spring, J. Geophys. Res. 102, 28,469-28,487.Google Scholar
  16. Crawford, J. D., Davis, Olson, J., Chen, G., Liu, S., Gregory, G., Barrick, J., Sachse, G., Sandholm, S., Heikes, B., Singh, H., and Blake, D., 1999a: Assessment of upper tropospheric HOx sources over the tropical Pacific based on NASA GTE/PEM data: Net effect on HOx and other photochemical parameters, J. Geophys. Res. 104, 16,255-16,273.Google Scholar
  17. Crawford, J., Davis, D., Chen, G., Shetter, R., Müller, M., Barrick, J., and Olson, J., 1999b: An assessment of cloud effects on photolysis rate coefficients: Comparison of experimental and theoretical values, J. Geophys. Res. 104, 5725-5734.Google Scholar
  18. Davis, D. D. et al., 1993: Photostationary state analysis of the NO2-NO system based on airborne observations from the subtropical/tropical North and South Atlantic, J. Geophys. Res. 98, 23,501-23,523.Google Scholar
  19. Davis, D. D., Crawford, J., Chen, G., Chameides, W., Liu, S., Bradshaw, J., Sandholm, S., Sachse, G., Gregory, G., Anderson, B., Barrick, J., Bachmeier, A., Collins, J., Browell, E., Blake, D., Rowland, S., Kondo, Y., Singh, H., Talbot, R., Heikes, B., Merrill, J., Rodriguez, J., and Newell, R. E., 1996: Assessment of the ozone photochemistry tendency in the western North Pacific as inferred from PEM-West A observations during the fall of 1991, J. Geophys. Res. 101, 2111-2134.Google Scholar
  20. Davis, D., Chen, G., Bandy, A., Thornton, D., Eisele, F., Mauldin, L., Tanner, D., Lenschow, D., Fuelberg, H., Huebert, B., Heath, J., Clarke, A., and Blake, D.,: 1999: Dimethyl sulfide oxidation in the equatorial Pacific: Comparison of model simulations with field observations for DMS, SO2, H2SO4(g), MSA(g), MS, and NSS, J. Geophys. Res. 104, 5765-5784.Google Scholar
  21. DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling, JPL Publ. 97-4, Jet Propul. Lab., Pasadena, CA.Google Scholar
  22. Duce, R. A. et al., 1991: The atmospheric input of trace species to the world ocean, Global Biogeochemical Cycles 5, 193-260.Google Scholar
  23. Duderstadt, K. A., Carroll, M. A., Sillman, S., Wang, T., Albercook, G. M., Feng, L., Parrish, D. D., Holloway, J. S., Felisenfeld, F. C., Blake, D. R., Blake, N. J., and Forbes, G., 1998: Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 Summer Intensive, J. Geophys. Res. 103, 13,531-13,555.Google Scholar
  24. Eisele, F. L. and Tanner, D. J., 1991: Ion assisted tropospheric OH measurement, J. Geophys. Res. 96, 9295-9308.Google Scholar
  25. Eisele, F. L. and Tanner, D. J., 1993: Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere, J. Geophys. Res. 98, 9001-9010.Google Scholar
  26. Fan, S.-M., Jacob, D. J., Mauzerall, D. L., Bradshaw, J. D., Sandholm, S. T., Blake, D. R., Singh, H. B., Talbot, R. W., Gregory, G. L., and Sachse, G. W., 1994: Origin of tropospheric NOx over subarctic eastern Canada in summer, J. Geophys. Res. 99, 16,867-16,877.Google Scholar
  27. Fuchs, N. A. and Sutugin, A. G., 1970: Highly Dispersed Aerosols, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  28. Hanson, D. R., Burkholder, J. B., Howard, C. J., and Ravishankara, A. R., 1992: Measurement of OH and HO2 radical uptake coefficients on water and sulfuric acid surfaces, J. Phys. Chem. 96, 4979-4985.Google Scholar
  29. Harder, J. W., Jakoubek, R. 0., and Mount, G. H., 1997: Measuerment of tropospheric trace gases by long-path differential absorption spectroscopy during the 1993 OH photochemistry experiment, J. Geophys. Res. 102, 6215-6226.Google Scholar
  30. Heikes, B. G. and Thompson, A. M., 1983: Effects of heterogeneous processes on NO3, HONO, and HNO3, chemistry in the troposphere, J. Geophys. Res. 88, 10,883-10,895.Google Scholar
  31. Heikes, B. G., Delany, A. C., Lazarus, A. L., and Penkett, S. A., 1986: Measured surface flux of H2O2 to wheat, Eos Trans. AGU 67, 885.Google Scholar
  32. Heikes, B. G., 1992: Formaldehyde and hydroperoxides at Mauna-Loa observatory, J. Geophys. Res. 97, 18,001-18,013.Google Scholar
  33. Heikes, B. G., Lee, M., Bradshaw, J. D., Sandholm, S., Davis, S. D., Crawford, J. H., Jose Rodriguez, Liu, S., McKeen, S., Thornton, D., Bandy, A., Gregory, G., Talbot, R., and Blake, D., 1996a: Hydrogen peroxide and methylhydroperoxide distributions related to ozone and odd hydrogen over the North Pacific in the fall of 1991, J. Geophys. Res. 101, 1891-1905.Google Scholar
  34. Heikes, B. G., Lee, M., Jacob, D., Talbot, R., Bradshaw, J., Singh, H., Blake, D., Anderson, B., Fuelberg, H., and Thompson, A. M., 1996b: Ozone hydroperoxides oxides of nitrogen, and hydrocarbon budgets in the marine boundary layer over the South Atlantic, J. Geophys. Res., 101, 24,221-24,235.Google Scholar
  35. Hoell, J. D., Davis, D. D., Jacob, D. J., Rodgers, M. O., Newell, R. E., Fuelberg, H. E., McNeal, R. J., Raper, J. L., and Bendura, R. J., 1999: Pacific exploratory mission in the tropics; September 1996, J. Geophys. Res. 104, 5567-5583.Google Scholar
  36. Jacob, D. J., 1986: Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate, J. Geophys. Res. 91, 9807-9826.Google Scholar
  37. Jacob, D. J., Heikes, B. G., Fan, S-M., Logan, J. A., Mauzerall, D. L., Bradshaw, J. D., Singh, H. B., Gregory, G. L., Talbot, R. W., Blake, D. R., and Sachse, G. W., 1996: The origin of ozone and NO, in the tropical troposphere: A photochemical analysis of aircraft observations over the south Atlantic basin, J. Geophys. Res. 101, 24,235-24,250.Google Scholar
  38. Kawa, S. R. and Pearson Jr., R., 1989: Ozone budgets from dynamics and chemistry of marine stratocumulus experiment, J Geophys. Res. 94, 9809-9817.Google Scholar
  39. Lee, M., Noone, B. C., O'Sullivan, D., and Heikes, B. G., 1995: Method for the collection and HPLC analysis of hydrogen peroxide and C1 and C2 hydroperoxides in the atmosphere, J. Atmos. Ocean. Technol. 12, 1060-1070.Google Scholar
  40. Levy, H., 1971: Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173, 141-143.Google Scholar
  41. Levy, H., 1972: Photochemistry of the lower troposphere, Planet. Space Sci. 20, 919-935.Google Scholar
  42. Levy, H., 1974: Photochemistry of the troposphere, Adv. Photo chem. 9, 369-524.Google Scholar
  43. Liu, S. C., McFarland, M., Kley, D., Zafiriou, O., and Huebert, B., 1983: Tropospheric NOx and O3 budget in the equatorial Pacific, J. Geophys. Res. 88, 1360-1368.Google Scholar
  44. Liu, S. C. et al., 1992: A study of the photochemistry and ozone budget during the Mauna Loa observatory photochemistry experiment, J. Geophys. Res. 97, 10,463-10,471.Google Scholar
  45. Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C., 1997: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. Chem. 101, 4943-4949.Google Scholar
  46. Mauldin III, R. L., Frost, G. J., Chen, G., Tanner, D. J., Prevot, A. S. H., Davis, D. D., and Eisele, F. L., OH measurements during the first aerosol characterization experiment (ACE 1): Observations and model comparisons, J. Geophys. Res. 103, 16,713-16,729.Google Scholar
  47. Mauldin III, R. L., Tanner, D. J., and Eisele, F. L., 1999: Measurement of OH during during PEM tropics A, J. Geophys. Res. 104, 5817-5827.Google Scholar
  48. McPeters, R. D., Bhartia, P. K., Krueger, A. J., Herman, J. R., Wellemeyer, C. G., Seftor, C. J., Jaross, G., Torres, O., Moy, L., Labow, G., Byerly, W., Taylor, S. L., Swissler, T., and Cebula, R. P., 1998: Earth Probe total ozone mapping spectrometer (TOMS) data products user's guide, NASA/TP-1998-206895.Google Scholar
  49. Mount, G. H., 1992: The measurement of tropospheric OH by long path absorption. 1. Instrumentation, J. Geophys. Res. 97, 2427-2444.Google Scholar
  50. Mozurkewich, M. and Calvert, J. G., 1998: Reaction probability of N2O5 on aqueous aerosols, J. Geophys. Res. 93, 15,889-15,896.Google Scholar
  51. Penkett, S. A., Monks, P. S., Carpenter, L. J., and Clemitshaw, K. C., Ayers, G. P., Gilett, R. W., Galbally, I. E., and Meyer, C. P., 1997: Relationships between ozone photolysis rates and peroxy radical concentrations in clean marine air over the Southern ocean, J. Geophys. Res. 102, 12,805-12,817.Google Scholar
  52. Penkett, S. A., Reeves, C. E., Bandy, B. J., Kent, J. M., and Richer, H. R., 1998: Comparison of calculated and measured peroxide data collected in marine air to investigate prominent features of the annual cycle of ozone in the troposphere, J. Geophys. Res. 103, 13,377-13,388.Google Scholar
  53. Ridley, B., Madronich, S., Chatfield, R., Walega, J., Shetter, R., Carroll, M., and Shetter, R., 1992: Measurements and model simulations of the photostationary state during the Mauna Loa observatory photochemistry experiment: Implications for radical concentrations and ozone production and loss rates, J. Geophys. Res. 97, 10,375-10,388.Google Scholar
  54. Russell, L. M., Lenschow, D. H., Laursen, K. K., Bates, T. S., Bandy, A. R., Thornton, D., 1998: Bidirectional mixing in a marine PBL overlain by a second turbulent layer, J. Geophys. Res. 103, 16,411-16,432.Google Scholar
  55. Schwartz, S. E. and Freiburg, J. E., 1981: Mass-transport limitation to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions, Atmos. Env. 15, 1129-1144.Google Scholar
  56. Schwartz, S. E., 1984: Gas-aqueous reactions of sulfur and nitrogen oxides in liquid-water clouds, SO 2 , NO and NO 2 Oxidation Mechanisms: Atmospheric Considerations, Butterworth, Boston, pp. 173-208.Google Scholar
  57. Schwartz, S. E., 1986: Mass transport considerations pertinent to aqueous-phase reactions of gases in liquid water clouds, Chemistry of Multiphase Atmospheric Systems, Springer, Heidelburg, pp. 415-471.Google Scholar
  58. Schwartz, S. E., 1988: Mass-transport limitation to the rate of in-cloud oxidation of SO2: Reexamination in the light of new data, Atmos. Env. 22, 2491-2499.Google Scholar
  59. Talukdar, R. K., Longfellow, C. A., Gilles, M. K., and Ravishankara, A. R., 1998: Quantum yields of O(1D) in the photolysis of ozone between 289 and 329 nm as a function of temperature, Geophys. Res. Lett 25, 143-146.Google Scholar
  60. Tanner, D. J. and Eisele, F. L., 1995: Present OH measurement limits and associated uncertainties, J. Geophys. Res. 100, 2883-2892.Google Scholar
  61. Thompson, A. M. and Stewart, R. W., 1991: Effect of chemical kinetics uncertainties on calculated constituents in a tropospheric photochemical model, J. Geophys. Res. 96, 13,089-13,108.Google Scholar
  62. Thompson A. M., Johnson, J. E., Torres, A. L., Bates, T. S., Kelly, K. C., Atlas, E., Greenberg, J. P., Donahue, N. M., Yvon, S., Saltzman, E., Heikes, B. G., Mosher, B. W., Shashkov, A. A., and Yegorov, V. I., 1993: Ozone observations and a model of marine boundary layer photochemistry during SAGA 3, J. Geophys. Res. 98, 16,955-16,968.Google Scholar
  63. Torres, A. L. and Thompson, A. M., 1993: Nitric oxide in the equatorial Pacific boundary layer: SAGA 3 Measurements, J. Geophys. Res. 98, 16,949-16,954.Google Scholar
  64. Trainer, M. E., Hsie, Y., McKeen, S. A., Tallamraju, R., Parrish, D. D., Fehsenfeld, F. C., and Liu, S. C., 1987: Impact of natural hydrocarbons in hydroxyl and peroxy radicals at a remote site, J. Geophys. Res. 92, 11,879-11,894.Google Scholar
  65. Worsnop, D. R., Zahniser, M. S., Kolb, C. E., Gardner, J. A., Watson, L.R., Van Doren, J. M., Jayne, J. T., and Davidovits, P., 1989: Temperature dependance of mass accommodation of SO2 and H2O2 on aqueous surfaces, J. Phys. Chem. 93, 1159-1172.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • G. Chen
    • 1
  • D. Davis
    • 1
  • J. Crawford
    • 2
  • B. Heikes
    • 3
  • D. O'Sullivan
    • 4
  • M. Lee
    • 5
  • F. Eisele
    • 6
  • L. Mauldin
    • 6
  • D. Tanner
    • 1
  • J. Collins
    • 2
  • J. Barrick
    • 2
  • B. Anderson
    • 2
  • D. Blake
    • 7
  • J. Bradshaw
    • 1
  • S. Sandholm
    • 1
  • M. Carroll
    • 8
  • G. Albercook
    • 8
  • A. Clarke
    • 9
  1. 1.Georgia Institute of TechnologyAtlantaU.S.A
  2. 2.NASA Langley Research CenterHamptonU.S.A
  3. 3.University of Rhode IslandNarragansettU.S.A
  4. 4.U.S. Naval AcademyAnnapolisU.S.A
  5. 5.Korea Ocean Research and Development InstituteSeoulKorea
  6. 6.National Center for Atmospheric ResearchBoulderU.S.A
  7. 7.University of California at Irvine - IrvineIrvineU.S.A
  8. 8.University of MichiganAnn ArborU.S.A
  9. 9.University of HawaiiHonoluluU.S.A

Personalised recommendations