Skip to main content
Log in

The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and \(\hbox {CO}_{2}\) Mixing Ratios at a Low-Altitude Mountaintop

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Mountaintop trace-gas mixing ratios are often assumed to represent free atmospheric values, but are affected by valley planetary boundary-layer (PBL) air at certain times. We hypothesize that the afternoon valley–PBL height relative to the ridgetop is important in the diurnal cycle of mountaintop trace-gas mixing ratios. To investigate this, we use, (1) 4-years (1 January 2009–31 December 2012) of CO and \(\hbox {CO}_{2}\) mixing-ratio measurements and supporting meteorological observations from Pinnacles (\(38.61^{\circ }\hbox {N}\), \(78.35^{\circ }\hbox {W}\), 1017 m a.s.l.), which is a monitoring site in the Appalachian Mountains, (2) regional \(\hbox {O}_{3}\) mixing-ratio measurements, and (3) PBL heights determined from a nearby sounding station. Results reveal that the amplitudes of the diurnal cycles of CO and \(\hbox {CO}_{2}\) mixing ratios vary as a function of the daytime maximum valley–PBL height relative to the ridgetop. The mean diurnal cycle for the subset of days when the afternoon valley–PBL height is at least 400 m below the ridgetop shows a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, especially on days when PBL heights are at least 400 m above the ridgetop, suggests that measurements from these days can be used as with afternoon measurements from flat terrain in applications requiring regionally-representative measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andrews AE, Kofler JD, Trudeau ME, Williams JC, Neff DH, Masarie KA, Chao DY, Kitzis DR, Novelli PC, Zhao CL, Dlugokencky EJ, Lang PM, Crotwell MJ, Fischer ML, Parker MJ, Lee JT, Baumann DD, Desai AR, Stanier CO, De Wekker SFJ, Wolf DE, Munger JW, Tans PP (2014) \(\text{ CO }_{2}\), CO, and \(\text{ CH }_{4}\) measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos Meas Tech 7:647–687

    Article  Google Scholar 

  • Atlas EL, Ridley BA (1996) The Mauna Loa Observatory photochemistry experiment: introduction. J Geophys Res 101(D9):14531–14541

    Article  Google Scholar 

  • Baltensperger U, Gäggeler HW, Jost DT, Lugauer M, Schwikowski M, Weingartner E (1997) Aerosol climatology at the high-alpine site Jungfraujoch, Switzerland. J Geophys Res 102(D16):19707–19715

    Article  Google Scholar 

  • Balzani Lööv JM, Henne S, Legreid G, Staehelin J, Reimann S, Prévôt ASH, Steinbacher M, Vollmer MK (2008) Estimation of background concentrations of trace-gases at the Swiss alpine site Jungfraujoch (3580 m asl). J Geophys Res 113:D22305

    Article  Google Scholar 

  • Bamberger I, Oney B, Brunner D, Henne S, Leuenberger M, Buchmann N, Eugster W (2017) Observations of atmospheric methane and carbon dioxide mixing-ratios: tall-tower or mountaintop stations? Boundary-Layer Meteorol. https://doi.org/10.1007/s10546-017-0236-3

  • Berhanu TA, Satar E, Schanda R, Nyfeler P, Moret H, Brunner D, Oney B, Leuenberger M (2016) Measurements of greenhouse gases at Beromünster tall-tower station in Switzerland. Atmos Meas Tech 9:2603–2614

    Article  Google Scholar 

  • Broder B, Gygax HA (1985) The influence of locally induced wind systems on the effectiveness of nocturnal dry deposition of ozone. Atmos Environ 19:1627–1637

    Article  Google Scholar 

  • Brooks BJ, Desai AR, Stephens BB, Bowling DR, Burns SP, Watt AS, Heck SL, Sweeney C (2012) Assessing filtering of mountaintop \(\text{ CO }_{2}\) mole fractions for application to inverse models of biosphere–atmosphere carbon exchange. Atmos Chem Phys 12:2099–2115

    Article  Google Scholar 

  • Bukowiecki N, Weingartner E, Gysel M, Collaud Coen M, Zieger P, Herrmann E, Steinbacher M, Gäggeler HW, Baltensperger U (2016) A review of more than 20 years of aerosol observation at the high altitude Research station Jungfraujoch, Switzerland (3580 m asl). Aerosol Air Qual Res 16:764–788

    Article  Google Scholar 

  • Chandra N, Lal S, Venkataramani S, Patra PK, Sheel V (2016) Temporal variations of atmospheric \(\text{ CO }_{2}\) and CO at Ahmedabad in western India. Atmos Chem Phys 16:6153–6173

    Article  Google Scholar 

  • Cristofanelli P, Fierli F, Marinoni A, Calzolari F, Duchi R, Burkhart J, Stohl A, Maione M, Arduini J, Bonasoni P (2013) Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m asl). Atmos Chem Phys 13:15–30

    Article  Google Scholar 

  • Dabberdt WF, Carroll MA, Baumgardner D, Carmichael G, Cohen R, Dye T, Ellis J, Grell G, Grimmond S, Hanna S, Irwin J, Lamb B, Madronich S, McQueen J, Meagher J, Odman T, Pleim J, Schmid HP, Westphal DL (2004) Meteorological research needs for improved air quality forecasting: report of the 11th prospectus development team of the U.S. Weather Research Program. Bull Am Meteorol Soc 85:563–586

    Article  Google Scholar 

  • De Wekker SFJ (2002) Structure and morphology of the convective boundary layer in mountainous Terrain. Ph.D. Dissertation, The University of British Columbia, BC, Canada

  • De Wekker SFJ, Kossmann M (2015) Convective boundary layer heights over mountainous terrain—a review of concepts. Front Earth Sci 3:77

    Article  Google Scholar 

  • De Wekker SFJ, Ameen A, Song G, Stephens BB, Hallar AG, McCubbin IB (2009) A preliminary investigation of boundary layer effects on daytime atmospheric \(\text{ CO }_{2}\) concentrations at a mountaintop location in the Rocky Mountains. Acta Geophys 57(4):904–922

    Article  Google Scholar 

  • Elanksy NF, Lokoshchenko MA, Belikov IB, Skorokhod AI, Shumskii RA (2007) Variability of trace-gases in the atmospheric boundary layer from observations in the city of Moscow. Atmos Ocean Phys 43(2):219–231

    Article  Google Scholar 

  • Forrer J, Rüttiman R, Schneiter D, Fischer A, Buchmann B, Hofer P (2000) Variability of trace-gases at the high-Alpine site Jungfraujoch caused by meteorological transport processes. J Geophys Res 105(D10):12241–12251

    Article  Google Scholar 

  • Gao J, Wang T, Ding A, Liu C (2005) Observational study of ozone and carbon monoxide at the summit of mount Tai (1534 m asl) in central-eastern China. Atmos Environ 39:4779–4991

    Article  Google Scholar 

  • Greco S, Baldocchi DD (1996) Seasonal variations of \(\text{ CO }_{2}\) and water vapour exchange rates over a temperate deciduous forest. Glob Chang Biol 2:183–197

    Article  Google Scholar 

  • Henne S, Junkermann W, Kariuki JM, Aseyo J, Klausen J (2008a) Mount Kenya Global Atmospheric Watch Station (MKN): installation and meteorological characterization. J Appl Meteorol Clim 47:2946–2962

    Article  Google Scholar 

  • Henne S, Klausen J, Junkermann W, Kariuki JM, Aseyo JO, Buchmann B (2008b) Representativeness and climatology of carbon monoxide and ozone at the global GAW station Mt. Kenya in equatorial Africa. Atmos Chem Phys 8:3119–3139

    Article  Google Scholar 

  • Hondula DM, Davis RE, Knight DB, Sitka LJ, Enfield K, Gawtry SB, Stenger PJ, Deaton ML, Normile CP, Lee TR (2013) A respiratory alert model for the Shenandoah Valley, Virginia, USA. Int J Biometeorol 57:91–105

    Article  Google Scholar 

  • Keeling CD, Bacastow RB, Bainbridge AE, Ekdahl CA, Guenther PR, Waterman LS, Chin JFS (1976) Atmospheric carbon-dioxide variations at Mauna-Loa Observatory, Hawaii. Tellus 28(6):538–551

    Google Scholar 

  • Koffi EN, Bergamaschi P, Karstens U, Krol M, Segers A, Schmidt M, Levin I, Vermeulen AT, Fisher RE, Kazan V, Klein Baltink H, Lowry D, Manca G, Meijer HAJ, Moncrieff J, Pal S, Ramonet M, Scheeren HA (2016) Evaluation of the boundary layer dynamics of the TM5 model over Europe. Geosci Model Dev 9:3137–3160

    Article  Google Scholar 

  • Lee TR (2015) The impact of planetary boundary layer dynamics on mountaintop trace-gas variability. PhD dissertation, University of Virginia

  • Lee TR, De Wekker SFJ (2016) Estimating daytime planetary boundary layer heights over a valley from rawinsonde observations at a nearby airport: an application to the Page Valley in Virginia, USA. J Appl Meteorol Climatol 55(3):791–809

    Article  Google Scholar 

  • Lee TR, Pal S (2017) On the potential of 25 years (1991–2015) of rawinsonde measurements for elucidating climatological and spatiotemporal patterns of afternoon boundary layer depths over the contiguous US. Adv Meteorol 2017:6841239

    Google Scholar 

  • Lee TR, De Wekker SFJ, Andrews AE, Kofler J, Williams J (2012) Carbon dioxide variability during cold front passages and fair weather days at a forested mountaintop site. Atmos Environ 46:405–416

    Article  Google Scholar 

  • Lee TR, De Wekker SFJ, Wofford JEB (2014) Downscaling maximum temperature projections to subkilometer resolutions in the Shenandoah National Park of Virginia, USA. Adv Meteorol 2014:1–9

    Google Scholar 

  • Lee TR, De Wekker SFJ, Pal S, Andrews AE, Kofler J (2015) Meteorological controls on the diurnal variability of carbon monoxide mixing-ratio at a mountaintop monitoring site in the Appalachian Mountains. Tellus B 67:25659

    Article  Google Scholar 

  • Lin YC, Lin CY, Lin PH, Engling G, Lan Y, Kuo T, Hsu WT, Ting C (2011) Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269 m asl) in Central Taiwan: seasonal variations and influence of Asian continental outflow. Sci Total Environ 409:3033–3042

    Article  Google Scholar 

  • Lin JC, Mallia DV, Wu D, Stephens BB (2017) How can mountaintop \(\text{ CO }_{2}\) observations be used to constrain regional carbon fluxes? Atmos Chem Phys 17:5561–5581

    Article  Google Scholar 

  • Lugauer M, Baltensperger U, Furger M, Gäggeler HW, Jost DT (1998) Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl). Tellus B 50:76–92

    Article  Google Scholar 

  • MacDonald AM, Anlauf KG, Leaitch WR, Chan E, Tarasick DW (2011) Interannual variability of ozone and carbon monoxide at the Whistler high elevation site: 2002–2006. Atmos Chem Phys 11:11431–11446

    Article  Google Scholar 

  • Mayer J-C, Staudt K, Gilge S, Meixner FX, Foken T (2008) The impact of free convection on late morning ozone decreases on an Alpine foreland mountain summit. Atmos Chem Phys 8:5941–5956

    Article  Google Scholar 

  • McClure CD, Jaffe DA, Gao H (2016) Carbon dioxide in the free troposphere and boundary layer at the Mt. Bachelor Observatory. Aerosol Air Qual Res 16:717–728

    Article  Google Scholar 

  • McKendry IG, Lundgren J (2000) Tropospheric layering of ozone in regions of urbanized complex and/or coastal terrain: a review. Prog Phys Geog 24:329–354

    Article  Google Scholar 

  • Mesinger F, DiMego G, Kalnay E, Mitchell K, Sharfran PC, Ebisuzaki WE, Jović D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W (2006) North American regional reanalysis. Bull Am Meteorol Soc 87:343–360

    Article  Google Scholar 

  • Necki J, Schmidt M, Rozanski K, Zimnoch M, Korus A, Lasa J, Graul R, Levin I (2003) Six-year record of atmospheric carbon dioxide and methane at a high-altitude mountain site in Poland. Tellus B 55(2):94–104

    Article  Google Scholar 

  • Neu U, Künzle T, Wanner H (1994) On the relation between ozone storage in the residual layer and daily variation in near-surface ozone concentration—a case study. Boundary-Layer Meteorol 69(3):221–247

    Article  Google Scholar 

  • Novelli PC, Masarie KA, Lang PM (1998) Distributions and recent changes of carbon monoxide in the lower troposphere. J Geophys Res 103(D15):19015–19033

    Article  Google Scholar 

  • Obrist D, Hallar AG, McCubbin I, Stephens BB, Rahn T (2008) Measurements of atmospheric mercury at Storm Peak Laboratory in the Rocky Mountains: evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake. Atmos Environ 42:7579–7589

    Article  Google Scholar 

  • Ou-Yang C, Lin N, Sheu G, Lee C, Wang J (2014) Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia. Atmos Environ 89:613–622

    Article  Google Scholar 

  • Pal S (2014) Monitoring depth of shallow atmospheric boundary layer to complement LiDAR measurements affected by partial overlap. Rem Sens 6(9):8468–8493

    Article  Google Scholar 

  • Pal S, Lee TR, Phelps S, De Wekker SFJ (2014) Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site. Sci Total Environ 496:424–434

    Article  Google Scholar 

  • Pal S, Lopez M, Schmidt M, Ramonet M, Gibert F, Xueref-Remy I, Ciais P (2015) Investigation of the atmospheric boundary layer depth variability and its impact on the \(^{222}\)Rn concentration at a rural site in France. J Geophys Res Atmos 120(2):623–643

    Article  Google Scholar 

  • Pal S, De Wekker SFJ, Emmitt GD (2016) Spatial variability of the atmospheric boundary layer heights over a low mountain region: cases from MATERHORN-2012 field experiment. J Appl Meteorol Climatol 55(9):1927–1952

    Article  Google Scholar 

  • Pal S, Lee TR, De Wekker SFJ (2017) Combined impact of boundary layer height and near-surface meteorological conditions on the CO diurnal cycle at a low mountaintop site: Case studies using simultaneous lidar and in-situ observations. Atmos Environ 164:165–179

    Article  Google Scholar 

  • Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K, Miller JB, Bruhwiler LMP, Pétron G, Hirsch AI, Worthy DEJ, van der Werf GR, Randerson JT, Wennberg PO, Krol MC, Tans PP (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci 104(48):18925–18930

    Article  Google Scholar 

  • Peters W, Krol MC, van der Werf GR, Houweling S, Jones CD, Hughes J, Schaefer K, Masarie KA, Jacobson AR, Miller JB, Cho CH, Ramonet M, Schmidt M, Ciattaglia L, Apadula F, Heltai D, Meinhardt F, di Sarra AG, Piacentino S, Sferlazzo D, Aalto T, Hatakka J, Ström J, Haszpra L, Meijer HAJ, van der Laan S, Neubert REM, Jordan A, Rodo X, Morguí J, Vermeulen AT, Popa E, Rozanski K, Zimnoch M, Manning AC, Leuenberger M, Uglietti C, Dolman AJ, Ciais P, Heimann M, Tans PP (2010) Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Glob Chang Biol 16:1317–1337

    Article  Google Scholar 

  • Pillai D, Gerbig C, Ahmadov R, Rodenbeck C, Kretschmer R, Koch T, Thompson R, Neininger B, Lavrie JV (2011) High-resolution simulations of atmospheric \(\text{ CO }_{2}\) over complex terrain representing the Ochsenkopf mountain tall tower. Atmos Chem Phys 11:7445–7464

    Article  Google Scholar 

  • Pochanart P, Akimoto H, Kajii Y, Sukasem P (2003) Carbon monoxide, regional-scale transport, and biomass burning in tropical continental Southeast Asia: observations in rural Thailand. J Geophys Res 108(D17):4552

    Article  Google Scholar 

  • Popa ME, Gloor M, Manning AC, Jordan A, Schultz U, Haensel F, Seifert T, Heimann M (2010) Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland. Atmos Meas Tech 3:407–427

    Article  Google Scholar 

  • Reitebuch O, Strassburger A, Emeis S, Kuttler W (2000) Nocturnal secondary ozone concentration maxima analyzed by sodar observations and surface measurements. Atmos Environ 34:4315–4329

    Article  Google Scholar 

  • Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: key findings from MAP. Q J R Meteorol Soc 133:937–948

    Article  Google Scholar 

  • Schmidt M, Graul R, Sartorius H, Levin I (1996) Carbon dioxide and methane in continental Europe: a climatology, and \(^{222}\)Radon-based emission estimates. Tellus 48B:457–473

    Article  Google Scholar 

  • Schmidt M, Lopez M, Kwok CY, Messager C, Ramonet M, Wastine B, Vuillemin C, Truong F, Gal B, Parmentier E, Cloué O, Ciais P (2014) High-precision quasi-continuous atmospheric greenhouse gas measurements at Trainou tower (Orléans forest, France). Atmos Meas Tech 7:2283–2296

    Article  Google Scholar 

  • Sreenivas S, Mahesh P, Subin J, Kanchana AL, Rao PVN, Dadhwal VK (2016) Influence of meteorology and interrelationship with greenhouse gases (\(\text{ CO }_{2}\) and \(\text{ CH }_{4}\)) at a suburban site of India. Atmos Chem Phys 16:3953–3967

    Article  Google Scholar 

  • Steyn DG, De Wekker SFJ, Kossmann M, Martilli A (2013) Boundary layers and air quality in mountainous terrain. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting. Recent progress and current challenges. Springer, Berlin, pp 261–290

    Chapter  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 670

    Book  Google Scholar 

  • Sullivan JT, McGee TJ, Langford AO, Alvarez RJ, Senff CJ, Reddy PJ, Thompson AM, Twigg LW, Sumnicht GK, Lee P, Weinheimer A, Knote C, Long RW, Hoff RM (2016) Quantifying the contribution of thermally driven recirculation to a high-ozone event along the Colorado Front Range using lidar. J Geophys Res Atmos 121:10377–10390

    Article  Google Scholar 

  • Sun J, Burns SP, Delany AC, Oncley SP, Turnipseed AA, Stephens BB, Lenschow DH, LeMone MA, Monson RK, Anderson DE (2007) \(\text{ CO }_{2}\) transport over complex terrain. Agric For Meteorol 145:1–21

    Article  Google Scholar 

  • Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere: probable past and future changes. Science 256(5060):1157–1165

    Article  Google Scholar 

  • Thoning KW, Tans PP, Komhyr WD (1989) Atmospheric carbon dioxide at Mauna Loa Observatory. 2: Analysis of the NOAA/GMCC data, 1974–1985. J Geophys Res 94:8549–8565

    Article  Google Scholar 

  • van der Molen MK, Dolman AJ (2007) Regional carbon fluxes and the effect of topography on the variability of atmospheric \(\text{ CO }_{2}\). J Geophys Res Atmos 112:D01104

    Google Scholar 

  • Vogelezang DHP, Holtslag AAM (1996) Evaluation and model impacts of alternative boundary-layer height formulations. Boundary-Layer Meteorol 81:245–269

    Article  Google Scholar 

  • Vögtlin RM, Kossmann M, Güsten H, Heinrich G, Fiedler F, Corsmeier U, Kalthoff N (1996) Transport of trace-gases from the Upper Rhine valley to a mountain site in the northern Black Forest. Phys Chem Earth 21:425–428

    Article  Google Scholar 

  • Weiss-Penzias P, Jaffe DA, Swartzendruber P, Dennison JB, Chand D, Hafner W, Prestbo E (2006) Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J Geophys Res 111:D10304

    Article  Google Scholar 

  • Whiteman CD, Bian X, Zhong S (1999) Wintertime evolution of the temperature inversion in the Colorado Plateau Basin. J Appl Meteorol 38:1103–1117

    Article  Google Scholar 

  • Wunderli S, Gehrig R (1990) Surface ozone in rural, urban and alpine regions of Switzerland. Atmos Environ 24a(10):2641–2646

    Article  Google Scholar 

  • Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting. Recent progress and current challenges. Springer, Berlin, pp 261–290

    Google Scholar 

  • Zaveri RA, Saylor RD, Peters LK, McNider R, Song A (1995) A model investigation of summertime diurnal ozone behavior in rural mountainous locations. Atmos Environ 29(9):1043–1065

    Article  Google Scholar 

  • Zellwegger C, Forrer J, Hofer P, Nyeki S, Schwarzenbach B, Weingartner E, Ammann M, Baltensperger U (2003) Partitioning of reactive nitrogen \((\text{ NO }_{{\rm y}})\) and dependence on meteorological conditions in the lower free troposphere. Atmos Chem Phys 3:779–796

    Article  Google Scholar 

  • Zhu CS, Cao JJ, Xu BQ, Huang RJ, Wang P, Ho KF, Shen ZX, Liu SX, Han YM, Tie XX, Zhao ZZ, Chen LWA (2016) Black carbon aerosols at Mt. Muztagh Ata, a high-altitude location in the Western Tibetan Plateau. Aerosol Air Qual Res 16:752–763

    Article  Google Scholar 

Download references

Acknowledgements

This research and maintenance of the Pinnacles site was partly funded by an MOU between the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division, by NOAA award NA13OAR4310065, and by NSF-CAREER award ATM-1151445. We thank Željko Večenaj at the University of Zagreb for advice on instrument maintenance. We acknowledge Arlyn Andrews at NOAA ESRL as the primary provider of the CO mixing-ratio data, and Jonathan Kofler and Jonathan Williams at NOAA ESRL who assisted with the installation and maintenance of the CO and \(\hbox {CO}_{2}\) mixing-ratio monitoring system. We also thank staff from Shenandoah National Park, especially Elizabeth Garcia, Jim Schaberl, and Alan Williams, as well as Nevio Babić, Stephanie Phelps, and Mark Sghiatti from the University of Virginia Environmental Sciences Department for helping maintain data collection at the Pinnacles site. The CO and \(\hbox {CO}_{2}\) mixing-ratio datasets used are accessible for public research through NOAA ESRL (ftp://aftp.cmdl.noaa.gov/data/trace_gases/co/in-situ/tower/snp/). Finally, we thank the two anonymous reviewers whose suggestions helped improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temple R. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, T.R., De Wekker, S.F.J. & Pal, S. The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and \(\hbox {CO}_{2}\) Mixing Ratios at a Low-Altitude Mountaintop. Boundary-Layer Meteorol 168, 81–102 (2018). https://doi.org/10.1007/s10546-018-0343-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-018-0343-9

Keywords

Navigation