Skip to main content
Log in

ACTIVE SPACECRAFT POTENTIAL CONTROL

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Charging of the outer surface or of the entire structure of a spacecraft in orbit can have a severe impact on the scientific output of the instruments. Typical floating potentials for magnetospheric satellites (from +1 to several tens of volts in sunlight) make it practically impossible to measure the cold (several eV) component of the ambient plasma. Effects of spacecraft charging are reduced by an entirely conductive surface of the spacecraft and by active charge neutralisation, which in the case of Cluster only deals with a positive potential. The Cluster spacecraft are instrumented with ion emitters of the liquid-metal ion-source type, which will produce indium ions at 5 to 8 keV energy. The operating principle is field evaporation of indium in the apex field of a needle. The advantages are low power consumption, compactness and high mass efficiency. The ion current will be adjusted in a feedback loop with instruments measuring the spacecraft potential (EFW and PEACE). A stand-alone mode is also foreseen as a back-up. The design and principles of the operation of the active spacecraft potential control instrument (ASPOC) are presented in detail. Flight experience with a similar instrument on the Geotail spacecraft is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Décréau, P. M. E., Etcheto, J., Knott, K., Pedersen, A., Wrenn, G. L., and Young, D. T.: 1978,’ Multi-Experiment Determination of Plasma Density and Temperature’, Space Sci. Rev. 22, 633.

    Google Scholar 

  • Décréau, P.M. E. et al.: 1997, this issue.

  • Dixon, A. J. and v. Engel, A.: 1980, ‘Studies of Field Emission Gallium Ion Sources’, Inst. Phys. Conf. Ser. 54, 292.

    Google Scholar 

  • Evans, C. A., Jr. and Hendricks, C. D.: 1972, ‘An Electrohydrodynamic Ion Source for the Mass Spectrometry of Liquids’, Rev. Sci. Instr. 43, 1527.

    Google Scholar 

  • Fahleson, U.: 1967, ‘Theory of Electric Field Measurements Conducted in the Magnetosphere with Electric Probes’, Space Sci. Rev. 7, 238.

    Google Scholar 

  • Feuerbacher, B. and Fitton, B.: 1972, ‘Experimental Investigation of Photo-Emission From Satellite Surface Material’, J. Appl. Phys. 43 (4), 1563.

    Google Scholar 

  • Grard, R. J. L.: 1973, ‘Properties of the Satellite Photoelectron Sheath Derived From Photoemission Laboratory Results’, J. Geophys. Res. 78, 2885-2906.

    Google Scholar 

  • Gurnett, D.: 1997, et al., this issue.

  • Gustafsson, G.: 1997, et al., this issue.

  • Johnstone, A.: 1997, et al., this issue.

  • Jones, D.: 1981, ‘Xe+-Induced Ion-Cyclotron Harmonic Waves’, Active Experiments in Space Plasmas, Adv. Space Res. 1 (2), 103.

    Google Scholar 

  • Kingham, D. R. and Swanson, L. W.: 1984, ‘Mechanics of Ion Formation in Liquid Metal Ion Sources’, Applied Phys.. A34, 123.

    Google Scholar 

  • Kintner, P.M. and Kelley, M. C.: 1983, ‘A Perpendicular Ion Beam Instability: Solutions to the Linear Dispersion Relation’, J. Geophys. Res. 88, 357.

    Google Scholar 

  • Knott, K., Korth, A., Décréau, P., Pedersen, A., and Wrenn, G.: 1983, ‘Observations of the GEOS Equilibrium Potential and its Relation to the Ambient Electron Energy Distribution’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 19.

  • Lindqvist, P.-A.: 1983, ‘The Potential of ISEE in Different Plasma Environments’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 25.

  • Mahoney, J. F., Yahiku, A. Y., Daley, H. L., Moore, R. D., and Perel, J.: 1969, ‘Electrohydrodynamic Ion Source’, J. Applied Phys. 40, 5101.

    Google Scholar 

  • Miura, A., Okuda, H., and Ashour-Abdalla, M.: 1983, ‘Ion-Beam Driven Electrostatic Ion Cyclotron Instabilities’, Geophys. Res. Letters 10 (4), 353.

    Google Scholar 

  • Mott-Smith, H. and Langmuir, I.: 1926, ‘The Theory of Collectors in Gaseous Discharges’, Phys. Rev. 28, 727.

    Google Scholar 

  • Mourenas, D., Béghin, C., and Lebreton, J. P.: 1989, ‘Electron Cyclotron and Upper Hybrid Harmonics Produced by Electron Beam Injection on Spacelab 1’, Ann. Geophys. 7 (5), 519.

    Google Scholar 

  • Mullen, E. G., Gussenhoven, M. S., Hardy, D. A., Aggson, T. A., Ledley, B. G., and Whipple, E. C.: 1986, ‘SCATHA Survey of High-Level Spacecraft Charging in Sunlight’, J. Geophys. Res. 91, 1474.

    Google Scholar 

  • Olsen, R. C.: 1982, ‘The Hidden Ion Population of the Magnetosphere’, J. Geophys. Res. 87, 3481.

    Google Scholar 

  • Olsen, R. C., Chapell, C. R., and Burch, J. L.: 1986, ‘Aperture Plane Potential Control for Thermal Ion Measurements’, J. Geophys. Res. 91, 3117.

    Google Scholar 

  • Olsen, R. C. and Purvis, C. K.: 1983, ‘Observations of Charging Dynamics’, J. Geophys. Res. 88, 5657.

    Google Scholar 

  • Paschmann, G. et al.,: 1997, this issue.

  • Pedersen, A.: 1995, ‘Solar Wind and Magnetosphere Plasma Diagnostics by Spacecraft Electrostatic Potential Measurements’, Ann. Geophys. 13 (2), 118.

    Google Scholar 

  • Pedersen, A., Chapell, C. R., Knott, K., and Olsen, R. C.: 1983, ‘Methods for Keeping a Conductive Spacecraft Near the Plasma Potential’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 185.

  • Pedersen, A., Cattell, C. A., Fälthammar, C. G., Formisano, V., Lindqvist, P. A., Mozer, F., and Torbert, R.: 1984, ‘Quasistatic Electric Field Measurements with Spherical Double Probes on the GEOS and ISEE Satellites’, Space Sci. Rev. 37, 269.

    Google Scholar 

  • Reasoner, D. L., Lennartsson, W., and Chappell, C.R.: 1976, in A. Rosen (ed.), ‘Relationship Between ATS-6 Spacecraft Charging Occurrences and Warm Plasma Encounters’, in Spacecraft Charging by Magnetospheric Plasmas, Prog. Astron. Aeron. 47, 89.

  • Rème, H., et al.: 1997, this issue.

  • Riedler, W., Rüdenauer, F. G., Beck, P., Berzhatyi, V., Fehringer, M., Finsterbusch, R., Neznamova, L., Pammer, R., Pürstl, F., and Steiger, W.: 1992, ‘MIGMAS/A: Test of a Scanning Ion Microscope Onboard the Soviet Space Station MIR’, Proc. International Space Year Conference, Münich, Germany, ESA ISY-4 (COSY-8), p. 127.

  • Rüdenauer, F. G., Steiger, W., Studnicka, H., and Pollinger, P.: 1987, Int. J. Mass Spectr. Ion Proc. 77, 63.

    Google Scholar 

  • Rüdenauer, F. G., Riedler, W., Berzhatyi, V., Fehringer, M., Göschl, E., Kropiunig, C., Neznamova, L., Steiger, W., and Torkar, K.: 1992, ‘LOGION: Operation of a Liquid Metal Ion Emitter Module Under Microgravity’, Proc. International Space Year Conference, Münich, Germany, ESA ISY-4 (COSY-8), p. 121.

  • Schmidt, R. and Pedersen, A.: 1987, ‘Long-Term Behaviour of Photo-Electron Emission from the Electric Field Double Probe Sensors on GEOS-2’, Planetary Space Sci. 35,61.

    Google Scholar 

  • Schmidt, R., Arends, H., Nikolaizig, N., and Riedler, W.: 1988, ‘Ion Emission to Actively Control the Floating Potential of a Spacecraft’, Adv. Space Res. 8 (1), 187.

    Google Scholar 

  • Schmidt, R., Schriver, D., and Ashour-Abdalla, M.: 1992, ‘Plasma Response to the Emission of Very Weak Ion Beams for Spacecraft Potential Control’, J. Geophys. Res. 97, 14959.

    Google Scholar 

  • Schmidt, R., Arends, H., Pedersen, A., Fehringer, M., Rüdenauer, F., Steiger, W., Narheim, B. T., Svenes, R., Kvernsveen, K., Tsuruda, K., Hayakawa, H., Nakamura, M., Riedler, W., and Torkar, K.: 1993, ‘A Novel Medium-Energy Ion Emitter for Active Spacecraft Potential Control’, Rev. Sci. Instr. 64 (8), 2293.

    Google Scholar 

  • Schmidt, R., Arends, H., Pedersen, A., Rüdenauer, F., Fehringer, M., Narheim, B. T., Svenes, R., Kvernsveen, K., Tsuruda, K., Mukai, T., Hayakawa, H., and Nakamura, M.: 1995, ‘Results from Active Spacecraft Potential Control on the Geotail Spacecraft’, J. Geophys. Res. 100 (A9), 17253.

    Google Scholar 

  • Taylor, G. I.: 1964, ‘Disintegration of Water Drops in an Electric Field’, Proc. Royal Soc. London A280, 383.

    Google Scholar 

  • Wagner, A. and Hall, T. M.: 1979, ‘Liquid Gold Ion Source’, J. Vac. Sci. Tech. 16, 1871.

    Google Scholar 

  • Walker, D.N.: 1986, ‘Perpendicular Ion Beam-Driven Instability in aMulticomponent Plasma: Effects of Varying Ion Composition on Linear Flute Mode Oscillations’, J. Geophys. Res. 91, 3305.

    Google Scholar 

  • Whipple, E. C.: 1981, ‘Potentials of Surfaces in Space’, Rept. Prog. Phys. 44, 1197.

    Google Scholar 

  • Whipple, E. C., Krinsky, I. S., Torbert, R. B., and Olsen, R. C.: 1983, ‘Anomalously High Potentials Observed on ISEE’, in Spacecraft Plasma Interactions and Their Influence on Field and Particle Measurements, Proceedings of the 17th ESLAB Symposium, ESA SP-198, p. 35.

  • Whipple, E. C., Warnock, J.M., and Winkler, R. H.: 1974, ‘Effect of Satellite Potential on Direct Ion Density Measurements Through the Plasmapause’, J. Geophys. Res. 79, 179.

    Google Scholar 

  • Woolliscroft, L. et al.: 1997, this issue.

  • Wrenn, G. L.: 1979, ‘Spacecraft Charging’, Nature 277, 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedler, W., Torkar, K., RÜDENAUER, F. et al. ACTIVE SPACECRAFT POTENTIAL CONTROL. Space Science Reviews 79, 271–302 (1997). https://doi.org/10.1023/A:1004921614592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004921614592

Keywords

Navigation