Skip to main content
Log in

A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A low-energy ion spectrometer (LEIS) for use aboard three-axis stabilized spacecraft has been developed to measure ion energy per charge distribution in three-dimensional space with good energy-, angular- and temporal-resolutions. For the standard top-hat electrostatic analyzer used widely in space plasma detection, three-axis stabilized spacecraft makes it difficult to obtain complete coverage of all possible ion arrival directions. We have designed angular scanning deflectors supplementing to a cylindrically symmetric top-hat electrostatic analyzer to provide a half-space field of view as 360°×90° (–45°–+45°), and fabricated the LEIS flight model for detecting magnetospheric ions in geosynchronous orbit. The performance of this payload has been evaluated in detail by a series of simulation and environmental tests, and the payload has also been calibrated through laboratory experiments using a low-energy ion source. The results show that capabilities of the LEIS payload are in accordance with the requirements of a magnetospheric mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlson C W, Curtis D W, Paschmann G, et al. An instrument for rapidly measuring plasma distribution functions with high resolution. Adv Space Res, 1982, 2: 67–70

    Article  Google Scholar 

  2. Young D T, Bame S J, Thomsen M F, et al. 2p radian field of view toroidal electrostatic analyzer. Rev Sci Instrum, 1988, 59: 743–751

    Article  Google Scholar 

  3. Lin R P, Anderson K A, Ashford S, et al. A three-dimensional plasma and energetic particle investigation for the wind spacecraft. Space Sci Rev, 1995, 71: 125–153

    Article  Google Scholar 

  4. Rème H, Cotin F, Cros A, et al. The giotto electron plasma experiment. J Phys E: Sci Instrum, 1987, 20: 721

    Article  Google Scholar 

  5. Barabash S, Sauvaud J A, Gunell H, et al. The analyser of space plasmas and energetic atoms (ASPERA-4) for the venus express mission. Planet Space Sci, 2007, 55: 1772–1792

    Article  Google Scholar 

  6. Reme H, Bosqued J M, Sauvaud J A, et al. The cluster ion spectrometry (CIS) experiment. Space Sci Rev, 1997, 79: 303–350

    Article  Google Scholar 

  7. Rème H, Aoustin C, Bosqued J M, et al. First multispacecraft ion measurements in and near the earth’s magnetosphere with the identical cluster ion spectrometry (CIS) experiment. Ann Geophys, 2001, 19: 1303–1354

    Article  Google Scholar 

  8. Carlson C W, McFadden J P, Turin P, et al. The electron and ion plasma experiment for fast. Space Sci Rev, 2001, 98: 33–66

    Article  Google Scholar 

  9. Young D T, Berthelier J J, Blanc M, et al. Cassini plasma spectrometer investigation. Space Sci Rev, 2004, 114: 1–112

    Article  Google Scholar 

  10. Barabash S, Lundin R, Andersson H, et al. The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars Express Mission. Space Sci Rev, 2006, 126: 113–164

    Article  Google Scholar 

  11. Daglis I A, Thorne R M, Baumjohann W, et al. The terrestrial ring current: Origin, formation, and decay. Rev Geophys, 1999, 37: 407–438

    Article  Google Scholar 

  12. Jordanova V K, Kistler L M, Kozyra J U, et al. Collisional losses of ring current ions. J Geophys Res, 1996, 101: 111–126

    Article  Google Scholar 

  13. Fok M C, Kozyra J U, Nagy A F, et al. Decay of equatorial ring current ions and associated aeronomical consequences. J Geophys Res, 1993, 98: 19381–19393

    Article  Google Scholar 

  14. Miyoshi Y, Kataoka R. Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Geophys Res Lett, 2005, 32: L21105

    Article  Google Scholar 

  15. Gary S P, Thomsen M F, Yin L, et al. Electromagnetic proton cyclotron instability: Interactions with magnetospheric protons. J Geophys Res, 1995, 100: 21961–21972

    Article  Google Scholar 

  16. Su Z, Wang G, Liu N, et al. Direct observation of generation and propagation of magnetosonic waves following substorm injection. Geophys Res Lett, 2017, 44: 7587–7597

    Article  Google Scholar 

  17. Horne R B, Thorne R M, Glauert S A, et al. Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves. Geophys Res Lett, 2007, 34: L17107

    Article  Google Scholar 

  18. Yang C, Su Z, Xiao F, et al. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region. Geophys Res Lett, 2017, 44: 3980–3990

    Article  Google Scholar 

  19. Su Z, Gao Z, Zhu H, et al. Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J Geophys Res Space Phys, 2016, 121: 6400–6416

    Article  Google Scholar 

  20. Funsten H O, Skoug R M, Guthrie A A, et al. Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci Rev, 2013, 179: 423–484

    Article  Google Scholar 

  21. Spence H E, Reeves G D, Baker D N, et al. Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen probes mission. Space Sci Rev, 2013, 179: 311–336

    Article  Google Scholar 

  22. Mann I R, Lee E A, Claudepierre S G, et al. Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts. Nat Commun, 2013, 4: 2795

    Article  Google Scholar 

  23. Collinson G A, Dorelli J C, Avanov L A, et al. The geometric factor of electrostatic plasma analyzers: A case study from the fast plasma investigation for the magnetospheric multiscale mission. Rev Sci Instruments, 2012, 83: 033303

    Article  Google Scholar 

  24. Knudsen D J, Burchill J K, Berg K, et al. A low-energy charged particle distribution imager with a compact sensor for space applications. Rev Sci Instrum, 2003, 74: 202–211

    Article  Google Scholar 

  25. Straub H C, Mangan M A, Lindsay B G, et al. Absolute detection efficiency of a microchannel plate detector for kilo-electron volt energy ions. Rev Sci Instrum, 1999, 70: 4238–4240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Shan or YuMing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Shan, X., Yuan, G. et al. A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft. Sci. China Technol. Sci. 62, 1015–1027 (2019). https://doi.org/10.1007/s11431-018-9288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-018-9288-8

Keywords

Navigation