Advertisement

Journal of Materials Science

, Volume 34, Issue 19, pp 4727–4735 | Cite as

The edge-cracking of AISI 304 stainless steel during hot-rolling

  • F. Czerwinski
  • J. Y. Cho
  • A. Brodtka
  • A. Zielinska-Lipiec
  • J. H. Sunwoo
  • J. A. Szpunar
Article

Abstract

The hot-rolled plates of AISI 304 stainless steel, containing edge cracks of different intensities, were examined. The austenitic matrix of the steel contained small amounts of δ ferrite inhomogeneously distributed across the width and the thickness of the plate. A correlation was found between ferrite content and edge cracking: the higher the ferrite content the longer the edge cracks. Among the chemical elements present in the steel, the most critical effect on δ ferrite content was exerted by carbon and nitrogen. The longest edge cracks were observed for plates with the lowest content of carbon and nitrogen. A possible contribution of steel chemistry and heating temperature to changes in the steel phase composition and the probability of edge cracking is discussed.

Keywords

Nitrogen Polymer Stainless Steel Ferrite Phase Composition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. M. Sellars and W. J. Tegart, Inter. Metall. Review 17 (1972) 1.Google Scholar
  2. 2.
    W. T. Lankford, Metall. Trans. 3 (1972) 1331.Google Scholar
  3. 3.
    B. G. Thomas, J. K. Brimacombe and I. V. Samarasekera, Iron Steel Soc. Trans. 7 (1986) 7.Google Scholar
  4. 4.
    E. T. Turkdogan, AIME Steelmaking Conf. Proc. 70 (1987) 399.Google Scholar
  5. 5.
    Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi and Y. Ohmori, Mater. Sci. Technol. 6 (1990) 793.Google Scholar
  6. 6.
    B. Mintz, S. Yue and J. J. Jonas, Inter. Mater. Rev. 36 (1991) 187.Google Scholar
  7. 7.
    K. A. Bywater and T. Gladman, Met. Technol. 8 (1976) 358.Google Scholar
  8. 8.
    T. Gladman, J. Iron Steel Inst. 209 (1971) 380.Google Scholar
  9. 9.
    S. Rudnik, ibid. 204 (1966) 374.Google Scholar
  10. 10.
    F. J. Humpreys and M. Hatherly, "Recrystallization and Related Annealing Phenomena" (Pergamon Oxford, 1995).Google Scholar
  11. 11.
    K. Mayland, R. W. Welburnm and A. Nicholson, Met. Technol. 8 (1976) 350.Google Scholar
  12. 12.
    J. H. Decroix, in "Deformation Under Hot Working Conditions" (The Iron and Steel Institute, London, 1968) p. 135.Google Scholar
  13. 13.
    "Metals Handbook," 10th ed., Vol. 1 (ASM International, Materials Park, OH, 1990) p. 892.Google Scholar
  14. 14.
    D. Raabe, Acta Mater. 45 (1997) 1137.Google Scholar
  15. 15.
    A. J. Mclaren and C. M. Sellars, Mater. Sci. Technol. 8 (1992) 1090.Google Scholar
  16. 16.
    E. E. Underwood, "Quantitative Stereology" (Addison-Wesley Publ. Co., London, 1970).Google Scholar
  17. 17.
    I. Saxl, "Stereology of Objects with Internal Structure" (Academia Praque, Praque, 1989).Google Scholar
  18. 18.
    R. H. Kane, "The Hot Deformation of Austenite" (Pergamon, 1977) p. 457.Google Scholar
  19. 19.
    "Metals Handbook," 9th ed., Vol. 17 (ASM International, Materials Park, OH, 1988) p. 129.Google Scholar
  20. 20.
    A. Desy and J. Vidts, "Traite de metallurgie structurale" (Dunod, Paris, 1968).Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • F. Czerwinski
    • 1
  • J. Y. Cho
    • 1
  • A. Brodtka
    • 1
  • A. Zielinska-Lipiec
    • 2
  • J. H. Sunwoo
    • 3
  • J. A. Szpunar
    • 1
  1. 1.Department of Metallurgical EngineeringMcGill UniversityMontrealCanada
  2. 2.Institute of MetallurgyUniversity of Mining and MetallurgyCracowPoland
  3. 3.Atlas Stainless Steels Inc.TracyCanada

Personalised recommendations