Skip to main content
Log in

Vertical distribution of planktonic ciliates in strongly stratified temperate lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The vertical distribution of planktonic ciliates in eight strongly stratified temperate lakes was studied in summer 1998. Ciliate abundance and biomass were highest (mean 39.9 cells ml−1 and 181.9 μg C l−1) in the epi-, and lowest (mean 8.2 cells ml−1 and 97.6 μg C l−1) in the hypolimnion. The community of ciliates was dominated by five orders: Oligotrichida, Haptorida, Prostomatida, Scuticociliatida and Peritrichida. The community composition varied greatly with depth. In the epilimnion, the ciliate numbers were dominated by oligotrichs but small algivorous prostomatids, peritrichs and haptorids were also numerous. In the metalimnion, these groups were replaced by scuticociliates and mixotrophic prostomatids. In the hypolimnion species known as benthic migrants appeared. We found a positive significant correlation (p < 0.05) between ciliate numbers and Chl a and bacterial densities. Only in the hypolimnion, the correlation between ciliates numbers and Chl a was not significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bark, A. W., 1981. The temporal and spatial distribution of planktonic and benthic protozoan communities in a small productive lake. Hydrobiologia 85: 239–255.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246–253.

    Google Scholar 

  • Beaver, J. R., T. L. Chrishan & R. W. Biernert, 1988. Distribution of planktonic ciliates in highly colored subtropical lakes: comparison with clearwater ciliate communities and the contribution of mixotrophic taxa to total autotrophic biomass. Freshwat. Biol. 20: 51–60.

    Google Scholar 

  • Carrias, J. F., C. Amblard & G. Bourdier, 1994. Vertical and temporal heterogeneity of planktonic ciliated protozoa in a humic lake. J. Plankton Res. 16: 471–485.

    Google Scholar 

  • Carrias, J. F., C. Amblard & G. Bourdier, 1998. Seasonal dynamics and vertical distribution of planktonic ciliates and their relationships to microbial food resources in the oligomesotrophic Lake Pavin. Arch. Hydrobiol. 143: 227–255.

    Google Scholar 

  • Carrick, H. J. & G. L. Fahnenstiel, 1990. Planktonic protozoa in Lakes Huron and Michigan: seasonal abundance and composition of ciliates and dinoflagellates. J. Great Lakes Res. 16: 319–329.

    Google Scholar 

  • Corliss, J. O., 1979. The Ciliated Protozoa: Characterization, Classification and Guide to the Literature. 2nd edn. Pergamon Press, London: 455 pp.

    Google Scholar 

  • Coats, Dolan, J. R. & D.W. Coats, 1991. Preliminary prey digestion in a predacious estuarine ciliate and the use of digestion data to estimate digestion. Limnol. Oceanogr. 36: 558–565.

    Google Scholar 

  • Esteve, I., J. M. N. Gaju, H. McKhann & L. Margulis, 1989. Green endosymbiont of Coleps from Lake Cisco identified as Chlorella vulgaris. Symbiosis. Balaban Publ., Rehovoth, Israel.

    Google Scholar 

  • Finlay, B. J., 1985. Nitrate respiration by protozoa (Loxodes spp.) in the hypolimnetic nitrate maximum of productive freshwater pond. Freshwater Biol. 15: 333–346.

    Google Scholar 

  • Finlay, B. J., T. Fenchel & S. Garfdiner, 1986. Oxygen perception and oxygen toxicity in the freshwater ciliated protozoon Loxodes. J. Protozool. 33: 157–165.

    Google Scholar 

  • Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes and waste waters, with notes on their ecology. Freshwat. Biol. 35: 375–482.

    Google Scholar 

  • Gifford, D. J., 1991. The protozoan-metazoan trophic link in pelagic ecosystems. J. Protozool. 38: 81–86.

    Google Scholar 

  • Gonzales, J.M., E. B. Sherr & B. F. Sherr, 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl. Environ. Microbiol. 56: 583–589.

    Google Scholar 

  • Guerrero, R., C. Pedros-Alio, T. M. Schmidt & J. Mas, 1985. Phototrophic sulphur bacteria in two Spanish lakes: vertical distribution and limiting factors. Limnol. Oceanogr. 30: 807–819.

    Google Scholar 

  • Güde, H., 1989. The role of grazing on bacteria in plankton succession. In Sommer, U. (ed.) Plankton Ecology: Succession in Planktonic Communities. Brock/Springer, Berlin: 337–364.

    Google Scholar 

  • Hecky, R. E. & H. J. Kling, 1981. The phytoplankton and protozooplankton of Lake Tanganyika: species composition, biomass, chlorophyll content and spatio-temporal distribution. Limnol. Oceanogr. 26: 548–564.

    Google Scholar 

  • James, M. R., C. W. Burns, & D. J. Forsyth, 1995. Pelagic ciliated protozoa in two monomictic, southern temperate lakes of contrasting trophic state: seasonal distribution and abundance. J. Plankton Res. 17: 1479–1500.

    Google Scholar 

  • Kahl, A., 1930. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 1. Allgemeiner Teil und Prostomata. Tierwelt Deutschlands 18: 1–180.

    Google Scholar 

  • Kahl, A., 1931. Urtiere oder Protozoa I: Wimpertiere oder Cili–ata(Infusoria) 2. Holotricha auβer den im 1. Teil behandeltenProstomata. Tierwelt Deutschlands 21: 181–398.

    Google Scholar 

  • Kahl, A., 1932. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 3. Spirotricha. Tierwelt Deutschlands 25: 399–650.

    Google Scholar 

  • Kahl, A., 1935. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 4. Peritricha und Chonotricha. Tierwelt Deutschlands 30: 651–886.

    Google Scholar 

  • Konopka, A., 1989. Metalimnetic cyanobacteria in hard-water lakes: Buoyoncy regulation and physiological state. Limnol. Oceanogr. 34: 1174–1184.

    Google Scholar 

  • Kutikova, L. A. & A. J. Starobogatov, 1977. A key to freshwater invertebrates of European USSR (plankton and benthos). Gidrometeizdat, Leningrad; 510 pp. (in Russian).

    Google Scholar 

  • Laybourn-Parry, J., J. Olver, A. Rogerson & P. L. Duvergé, 1990. The temporal and spatial patterns of protozooplankton abundance in a eutrophic temperate lake. Hydrobiologia 203: 99–110.

    Google Scholar 

  • Müller, H., A. Schöne, R. M. Pinto-Coelho, A. Schweizer & T. Weisse, 1991. Seasonal succession of ciliates in Lake Constance. Microb. Ecol. 21: 119–138.

    Google Scholar 

  • Nagata, T., 1988. The microflagellate-picoplankton food linkage in the water column of lake Biwa. Limnol. Oceanogr. 33: 504–517.

    Google Scholar 

  • Ott, I., R. Laugaste, S. Lokk & A.Mäemets, 1997. Plankton changes in Estonian small lakes in 1951-93. Proc. Est. Sci. Biol. Ecol. 46: 58–79.

    Google Scholar 

  • Pace, M. L. & J. D. Orcutt, 1981. The relative importance of protozoans, rotifers, and crustaceans in a freshwater zooplankton community. Limnol. Oceanogr. 26: 822–830.

    Google Scholar 

  • Pace, M. L., 1982. Planktonic ciliates: their distribution, abundance and relationship to microbial resources in a monomictic lake. Can. J. Fish. aquat. Sci. 39: 1106–1116.

    Google Scholar 

  • Patterson, D. J. & S. Hedley, 1992. Free-living Freshwater Protozoa. A Color Guide. Wolfe Publishing Ltd., England; 223 pp.

    Google Scholar 

  • Porter, K. G., M. L. Pace & J. F. Battey, 1979. Ciliate protozoans as links in freshwater planctonic food chains. Nature 277: 563–565.

    Google Scholar 

  • Putt, M. & D. K. Stoecker, 1989. An experimentally determined carbon:volume ratio for marine 'oligotrichous' ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097–1103.

    Google Scholar 

  • Sanders, R. W., K. G., Porter, S. J. Bennett & A. E., DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34: 673–687.

    Google Scholar 

  • Schönberger, M., 1994. Planktonic ciliated protozoa of Neusiedler See (Austria/Hungary)-a comparison between the turbid open lake and a reedless brown-water pond. Mar. Microbial Food Webs. 8: 251–263.

    Google Scholar 

  • Sherr, E. B. & B. F., Sherr, 1984. Role of heterotrophic protozoa in carbon and energy flow in aquatic ecosystems. In Klug, M. J. & C. A. Reddy, (eds) Current Perspectives in Microbial Ecology. Amer. Soc. Microbiol., Washington: 412–423.

    Google Scholar 

  • Simek, K., J. Bobkova, M. Macek, J. Nemoda & R. Psenner, 1995. Ciliates grazing on picoplankton in a eutrophic reservoir during summer phytoplankton maximum: a study at the species and community level. Limnol. Oceanogr. 40: 1077–1090.

    Google Scholar 

  • Steenbergen, C. L. M., J.-P. Sweerts & T. E. Cappenberg, 1993. Microbial Biogeochemical Activities in Lakes: Stratification and Eutrophication. 4. Aquatic Microbiology. An Ecological Approach. Blackwell Science Publications: 69-101.

  • Taylor, W. D. & M. L. Heynen, 1987. Seasonal and vertical distribution of Ciliophora in Lake Ontario. Can. J. Fish. aquat. Sci. 44: 2185–2191.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton Methodik. Mitt. int. Ver. Theor. Angew. Limnol. 9: 1–38.

    Google Scholar 

  • Zingel, P., 1999. Pelagic ciliated protozoa in a shallow eutrophic lake: community structure and seasonal dynamics. Arch. Hydrobiol. 146: 495–511.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zingel, P., Ott, I. Vertical distribution of planktonic ciliates in strongly stratified temperate lakes. Hydrobiologia 435, 19–26 (2000). https://doi.org/10.1023/A:1004021103681

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004021103681

Navigation