Skip to main content
Log in

Some Basic Properties of the Surrogate Subgrid-Scale Heat Flux in the Atmospheric Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The development of improved subgrid-scale (SGS) models for large-eddy simulation of scalar transport in the atmospheric boundary layer requires an improved understanding of basic properties of the SGS fluxes. High frequency atmospheric wind speed and temperature data sampled at a height of 1.7 m are used to measure SGS heat fluxes and dissipation of temperature variance, by means of one-dimensional filtering and invoking Taylor's hypothesis. Conditional averaging is used to isolate interesting features of the SGS signals, and to relate them to the large-scale characteristics of the flow, such as the presence of coherent structures. Both mean and conditionally averaged SGS quantities are compared with those obtained using a standard eddy-diffusivity model. Within the limitations imposed by the one-dimensional data analysis, we observe that the model appears unable to reproduce important features of the real signals, such as the negative dissipation of temperature variance associated with strong negative resolved temperature gradients due to the ejection of warm air under unstable atmospheric stability conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akselvoll, K. and Moin, P.: 1996, 'Large-Eddy Simulation of Turbulent Confined Coannular Jets', J. Fluid Mech. 315, 387-411.

    Google Scholar 

  • Albertson, J. D., Parlange, M. B., Kiely G., and Eichinger, W. E.: 1997, 'The Average Dissipation Rate of Turbulent Kinetic Energy in the Neutral and Unstable Atmospheric Surface Layer', J. Geophysical Res. 102(D12), 13423-13432.

    Google Scholar 

  • Albertson, J. D. and Parlange, M. B.: 1997, 'Surface Length Scales and Shear Stress: Implications for Land-Atmosphere Interaction over Complex Terrain', Water Resour. Res., submitted.

  • Andren, A., Brown, A. R., Graf, J., Mason, P. J., Moeng C.-H., Nieuwstadt, F. T. M., and Schumann, U.: 1994, 'Large-Eddy Simulation of the Neutrally Stratified Boundary Layer: A Comparison of Four Computer Codes', Quart. J. Roy. Meteorol. Soc. 120, 1457-1484.

    Google Scholar 

  • Barr, S., Buttler, W., Clark, D., Cottingame, W., and Eichinger, W.: 1994, 'Lidar-Observed Wind Patterns in the New Mexico-Texas Border Region, 9-11 September, 1994', Report to the ATR, 37 pp.

  • Clark, R. G., Ferziger, J. H., and Reynolds, W. C.: 1979, 'Evaluation of Subgrid Models using an Accurately Simulated Turbulent Flow', J. Fluid Mech. 91, 1-16.

    Google Scholar 

  • Deardorff, J. W.: 1970, 'A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers', J. Fluid Mech. 41, 453-480.

    Google Scholar 

  • Deardorff, J. W.: 1974, 'Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer', Boundary-Layer Meteorol. 7, 81-106.

    Google Scholar 

  • Domaradski, J. A., Liu, W., and Brachet, M. E.: 1993, 'An Analysis of Subgrid-Scale Interactions in Numerically Simulated Isotropic Turbulence', Phys. Fluids A 5, 1747-1759.

    Google Scholar 

  • Dwyer, M. J., Patton, E. G., and Shaw, R. H.: 1997, 'Turbulent Kinetic Energy Budgets from a Large-Eddy Simulation of Airflow above and within a Forest Canopy', Boundary-Layer Meteorol. 84, 23-43.

    Google Scholar 

  • Gao, W., Shaw, R. H., and Paw U, K. T.: 1989, 'Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy', Boundary-Layer Meteorol. 47, 349-377.

    Google Scholar 

  • Gao, W. and Shaw, R. H.: 1992, 'Conditional Analysis of Temperature and Humidity Microfronts and Ejection/Sweep Motions within and above a Deciduous Forest', Boundary-Layer Meteorol. 59, 35-57.

    Google Scholar 

  • Germano, M., Piomelli, U., Moin, P. and Cabot, W.: 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model', Phys. Fluids A 3, 1760-1765.

    Google Scholar 

  • Ghosal, S., Lund, T. S., Moin. P., and Akselvoll, K.: 1995, 'A Dynamic Localization Model for Large-Eddy Simulation of Turbulent Flows', J. Fluid Mech. 286, 229-255.

    Google Scholar 

  • Härtel, C. and Kleiser, L.: 1993, 'Energy Transfer between Large and Small Scales in Wall-Bounded Turbulent Flows', in U. Piomelli and S. Ragab (eds.), Engineering Applications of Large Eddy Simulations, Vol. 162, ASME., FED, p. 21.

  • Katul, G., Kuhn, G., Schieldge, J., and Hsieh C.-I.: 1997a, 'The Ejection-Sweep Character of Scalar Fluxes in the Unstable Surface Layer', Boundary-Layer Meteorol. 83, 1-26.

    Google Scholar 

  • Katul, G., Hsieh, C.-I., and Sigmon, J.: 1997b, 'Energy-Inertial Scale Interactions for Velocity and Temperature in the Unstable Atmospheric Surface Layer', Boundary-Layer Meteorol. 82, 49-80.

    Google Scholar 

  • Kiely, G., Albertson, J. D., Parlange, M. B., and Eichinger, W. E.: 1996, 'Convective Scaling of the Average Dissipation Rate of Temperature Variance in the Atmospheric Surface Layer', Boundary-Layer Meteorol. 77, 267-284.

    Google Scholar 

  • Lilly, D. K.: 1967, 'The Representation of Small-Scale Turbulence in Numerical Simulation Experiments', in Proc. IBM Scientific Computing Symposium on Environmental Sciences, 195-210.

  • Liu, S., Meneveau, C., and Katz, J.: 1994, 'On the Properties of Similarity Subgrid-Scale Models as Deduced from Measurements in a Turbulent Jet', J. Fluid Mech. 275, 83-119.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1992, 'Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers', J. Fluid Mech. 242, 51-78.

    Google Scholar 

  • Mason, P.: 1994, 'Large-Eddy Simulation: A Critical Review of the Technique', Quart. J. Roy. Meteorol. Soc. 120, 1-26.

    Google Scholar 

  • Meneveau, C.: 1994, 'Statistics of Turbulence Subgrid-Scale Stresses: Necessary Conditions and Experimental Tests', Phys. Fluids 6, 815-833.

    Google Scholar 

  • Monin, A. and Yaglom, A.: 1971, Statistical Fluid Mechanics, MIT Press, Cambridge MA, 874 pp.

    Google Scholar 

  • Murray, J. A., Piomelli, U., and Wallace, J.M.: 1996, 'Spatial and Temporal Filtering of Experimental Data for a prioriStudies of Subgrid-Scale Stresses', Phys. Fluids 8, 1978-1980.

    Google Scholar 

  • Nieuwstadt, F. T. M., Mason P. J., Moeng, C.-H., and Schumann, U.: 1991, 'Large-Eddy Simulation of the Convective Boundary Layer: A Comparison of Four Computer Codes', Turbulent Shear Flows 8, 343-367.

    Google Scholar 

  • O'Neil, J. and Meneveau, C.: 1997, 'Subgrid-Scale stresses and their Modeling in a Turbulent Plane Wake', J. Fluid Mech. 349, 253-293.

    Google Scholar 

  • Parlange, M. B., Katul, G. G., Folegatti, M. V., and Nielsen, D. R.: 1993, 'Evaporation and the Field Scale Soil Water Diffusivity Function', Water Resour. Res. 29, 1279-1286.

    Google Scholar 

  • Peltier, L. J., Wyngaard, J. C., Khanna, S., and Brasseur, J. G.: 1996, 'Spectra in the Unstable Surface Layer', J. Atmos. Sci. 53, 49-61.

    Google Scholar 

  • Piomelli, U., Moin, P., and Ferziger, J. H.: 1988, 'Model Consistency in Large Eddy Simulation of Turbulent Channel Flows', Phys. Fluids 31, 1884-1891.

    Google Scholar 

  • Porté-Agel, F., Meneveau, C., and Parlange, M. B.: 1998, 'A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to the Atmospheric Boundary Layer', submitted.

  • Press, W. C., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.: 1992, Numerical Recipes, Cambridge University Press, 2nd edition, 963 pp.

  • Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, 'Rough-Wall Turbulent Boundary Layers', Appl. Mech. Rev. 44, 1-25.

    Google Scholar 

  • Schumann, U.: 1995, 'Stochastic Backscatter of Turbulence Energy and Scalar Variance by Random Subgrid-Scale Fluxes', Proc. R. Soc. Lond. A 451, 293-318.

    Google Scholar 

  • Shaw, R. H., Tavangar, J., and Ward, D.: 1983, 'Structure of the Reynolds Stress in a Canopy Layer', J. Clim. Appl. Meteorol. 22, 1922-1931.

    Google Scholar 

  • Shaw, R. H., Paw U, K. T., and Gao, W.: 1989, 'Detection of Temperature Ramps and Flow Structures at a Deciduous Forest Site', Agric. For. Meteorol. 47, 123-138.

    Google Scholar 

  • Shaw, R. H. and Schumann, U.: 1992, 'Large-Eddy Simulation of Turbulent Flow above and within a Forest', Boundary-Layer Meteorol. 61, 47-64.

    Google Scholar 

  • Smagorinsky, J.: 1963, 'General Circulation Experiments with the Primitive Equations, Part 1: The Basic Experiment', Monthly Wea. Rev. 91, 99-164.

    Google Scholar 

  • Sorbjan, Z.: 1996, 'Effects Caused by Varying strength of the capping inversion based on a large-eddy simulation of the shear-Free Convective Boundary Layer', J. Atmos. Sci. 53, 2015-2024.

    Google Scholar 

  • Tong, C., Wyngaard, J. C., Khanna, S., and Brasseur, J. G.: 1997, 'Resolvable-and Subgrid-Scale Measurement in the Atmospheric Surface Layer: Technique and Issues', J. Atmos. Sci., preprint.

  • Wyngaard, J. C. and Clifford, S. F.: 1977, 'Taylor's Hypothesis and High-Frequency Turbulence Spectra', J. Atmos. Sci. 34, 922-929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porté-Agel, F., Meneveau, C. & Parlange, M.B. Some Basic Properties of the Surrogate Subgrid-Scale Heat Flux in the Atmospheric Boundary Layer. Boundary-Layer Meteorology 88, 425–444 (1998). https://doi.org/10.1023/A:1001521504466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001521504466

Navigation