Skip to main content
Log in

More Accurate Equation for Radial-Averaging Analysis of the Separation of a Binary Isotopic Mixtures in a Gas Centrifuge Radial

  • Published:
Atomic Energy Aims and scope

Abstract

A generalized isotope transport equation that is valid for arbitrary convective flows in a rotor is constructed by the radial averaging method on the basis of the isotopic approximation. A more accurate equation, differing from the classical equation by the presence of additional terms, for a countercurrent centrifuge is obtained for small radial flows and weak dependence of the axial gradient of the concentration on the radial coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Cohen, The Theory of Isotope Separation as Applied to Large-Scale Production of 235 U, McGraw Hill Books, New York (1951).

    Google Scholar 

  2. S. Villani (ed.), Enrichment of Uranium [Russian translation], Énergoatomizdat, Moscow (1983).

    Google Scholar 

  3. E. Ratz, “Optimal flows in gas centrifuges,” in: Workshop on Strong Rotation, Rome (1979), pp. 431–458.

  4. E. Von Halle, “The optimum axial flow taper in a countercurrent gas centrifuge,” US DOE Report K/OA-4445 (1979).

  5. D. Olander, “Theory of uranium enrichment by the gas centrifuge,” Progress in Nuclear Energy, 8, 1–33 (1981).

    Google Scholar 

  6. O. E. Aleksandrov, “Application of the radial averaging method for describing diffusion in a gas centrifuge with a nonuniform circulation flux,” At. Énerg., 86, No. 3, 210–219 (1999).

    Google Scholar 

  7. É. M. Aisen, V. D. Borisevich, and E. V. Levin, “Flow and separation in a gas centrifuge with Beams circulation scheme,” ibid., 72, No. 1, 44–47 (1992).

    Google Scholar 

  8. E. Von Halle, H. Wood, and R. Lowry, “The effect of vacuum core boundary conditions on separation in the gas centrifuge,” Nucl. Techn., 62, 325–334 (1983).

    Google Scholar 

  9. H. Wood and M. Gunzburger, “Adjoint and sensitivity-based methods for optimization of gas centrifuges,” in: Proceedings of the 7th Workshop on Separation Phenomena in Liquids and Gases, Moscow (2000), pp. 89–99.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokmantsev, V.I. More Accurate Equation for Radial-Averaging Analysis of the Separation of a Binary Isotopic Mixtures in a Gas Centrifuge Radial. Atomic Energy 92, 391–397 (2002). https://doi.org/10.1023/A:1019995427210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019995427210

Keywords

Navigation