Skip to main content
Log in

Rotation of a Plasma Jet by High-Frequency Electromagnetic Fields and Its Use for Mass Separation

  • ELECTROPHYSICS, ELECTRON AND ION BEAMS, PHYSICS OF ACCELERATORS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Equations are derived that describe the characteristics of the azimuthal motion and radial expansion of a plasma jet under the action of a rotating transverse magnetic field of a dipole configuration in a longitudinal static magnetic field. The analysis is carried out both in the multicomponent approximation and based on MHD equations considering the Hall effect. Based on the obtained dependences of the circumferential and radial ion velocities on magnetic field values, the separation characteristics of a direct-current plasma centrifuge are estimated for the separation of a two-component binary mixture simulating spent nuclear fuel (SNF). It is shown that the concentration of the heavy uranium–plutonium component in the sampling flow can be increased from the initial 96 to 99.8% with the extraction degree of the fuel component of 0.87.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. P. Smirnov, V. A. Zhil’tsov, A. I. Morozov, N. N. Semashko, A. A. Skovoroda, and A. V. Timofeev, in Proc. IX All-Russian (Int.) Sci. Conf. “Physicochemical Processes in Selection of Atoms and Molecules,” Zvenigorod, 2004, p. 7.

  2. V. A. Zhil’tsov, V. M. Kulygin, N. N. Semashko, A.  A.  Skovoroda, V. P. Smirnov, A. V. Timofeev, E. G. Kudryavtsev, V. I. Rachkov, and V. V. Orlov, At. Energy 101, 755 (2006).

  3. J.-M. Rax and R. Gueroult, J. Plasma Phys. 82, 595820504 (2016).

    Article  Google Scholar 

  4. A. V. Timofeev, Phys.-Usp. 57, 990 (2014).

    Article  Google Scholar 

  5. A. A. Samokhin, V. P. Smirnov, A. V. Gavrikov, and N. A. Vorona, Tech. Phys. 61, 283 (2016).

    Article  Google Scholar 

  6. R. Kh. Amirov, N. A. Vorona, A. V. Gavrikov, S. N. Zhabin, G. D. Lizyakin, V. P. Polishchuk, I. S. Samoilov, V. P. Smirnov, R. A. Usmanov, and I. M. Yartsev, Tr. Mosk. Fiz.-Tekh. Inst. 6, 136 (2014).

    Google Scholar 

  7. R. A. Usmanov, G. D. Lizyakin, V. P. Polishchuk, and I. M. Yartsev, Fiz. Obraz. Vuzakh 22, 142 (2016).

    Google Scholar 

  8. A. I. Karchevskii and E. P. Potanin, in Isotopes, Ed. by V. Yu. Baranov (Fizmatlit, Moscow, 2005), Vol. 1, p. 326.

    Google Scholar 

  9. V. D. Borisevich and E. P. Potanin, Tech. Phys. 63, 768 (2018).

    Article  Google Scholar 

  10. B. W. James and S. W. Simpson, IEEE Trans. Plasma Sci. 18, 289 (1976).

    Google Scholar 

  11. A. B. Belorusov, A. I. Karchevskii, Yu. A. Muromkin, and E. P. Potanin, Pis’ma Zh. Tekh. Fiz. 2, 664 (1976).

    Google Scholar 

  12. A. J. Fetterman and N. J. Fisch, Phys. Plasmas 18, 094503 (2011).

    Article  ADS  Google Scholar 

  13. V. G. Averin, A. B. Belorusov, A. I. Karchevskii, B. Martsynk’yan, I. A. Popov, and E. P. Potanin, Zh. Tekh. Fiz. 48, 66 (1978).

    Google Scholar 

  14. V. D. Borisevich and E. P. Potanin, Phys. Scr. 92, 075601 (2017).

    Article  ADS  Google Scholar 

  15. V. N. Zharikov and V. P. Minenko, Fiz. Plazmy 14, 1122 (1988).

    Google Scholar 

  16. N. M. Gorshunov and E. P. Potanin, At. Energy 124, 197 (2018).

  17. V. I. Tokmantsev and V. A. Palkin, At. Energy 123, 49 (2017).

  18. V. D. Borisevich, V. D. Borman, G. A. Sulaberidze, A. V. Tikhomirov, and V. I. Tokmantsev, Physical Foundations of Isotope Separation in a Gas Centrifuge (MEI, Moscow, 2011).

    Google Scholar 

  19. A. I. Karchevskii and E. P. Potanin, Magnetohydrodynamics 27, 325 (1991).

    Google Scholar 

  20. L. P. Gorbachev, N. V. Nikitin, and A. R. Ustinov, Magnetohydrodynamics 10, 406 (1974).

    Google Scholar 

  21. V. D. Borisevich, E. P. Potanin, and J. Whichello, J. Fluid Mech. 829, 328 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  22. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968).

    Google Scholar 

  23. G. W. Sutton and A. Sherman, Engineering Magnetohydrodynamics (McGraw-Hill, 1965).

    Google Scholar 

  24. S. I. Braginskii, in Issues in Plasma Theory, Ed. by M. A. Leontovich (Gosatomizdat, Moscow, 1963), Vol. 1, p. 183.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.D. Pustovitov and A.V. Timofeev for useful remarks.

Funding

E.P. Potanin is grateful for partial financial support from the Competitiveness Enhancement Program from the National Research Nuclear University MEPhI (contract no. 02.a03.21.0005 of August 27, 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Potanin.

Ethics declarations

We declare that we do not have any conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorshunov, N.M., Potanin, E.P. Rotation of a Plasma Jet by High-Frequency Electromagnetic Fields and Its Use for Mass Separation. Tech. Phys. 65, 461–467 (2020). https://doi.org/10.1134/S1063784220030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784220030093

Navigation