Skip to main content
Log in

A Simple And General Subgrid Model Suitable Both For Surface Layer And Free-Stream Turbulence

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A new and general approach is presented to allow standard subgrid schemes to besuitable both for surface layer and free-stream turbulence. Simple modificationsto subgrid schemes are proposed and derived for any vertical stabilityconditions. They are simple to implement in models and are suitable for morecomplicated simulations such as large-eddy simulation with inhomogeneoussurface conditions or complex topography. They are also applicable to mesoscaleand large-scale models. These modifications are physically justified by recentmeasurements of spectra close to the ground. The spectral analysis presentedshows how the energy deficit of blocked turbulence for a given dissipation(`anomalous dissipation') dramatically affects the coefficients to be used insubgrid schemes. As shown for neutral and convective cases with wind shear,these changes allow us to substantially improve the prediction of profiles for themean quantities in the surface layer. Agreement with similarity laws in the unstablecase is found up to about 0.2zi, for simulated shear, stabilityprofiles and dissipation rates of turbulent kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreas, E. L.: 1987, ‘On the Kolmogorov Constants for the Temperature-Humidity Cospectrum and the Refractive Index Spectrum’ J. Atmos. Sci. 44, 2399-2406.

    Google Scholar 

  • Andrén, Brown, A. R., Graf, J., Mason, P. J., Moeng, C., Nieuwstadt, F. T. M., and Schumann U.: 1994, ‘Large-Eddy Simulation of a Neutrally Stratified Boundary Layer: A Comparison of Four Computer Codes’ Quart. J. Roy. Meteorol. Soc. 120, 1457-1484.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’ J. Atmos. Sci. Sci. 28, 181-189.

    Google Scholar 

  • Caughey, S. J. and Palmer, S. G.: 1979, ‘Some Aspects of Turbulence Structure through the Depth of the Convective Boundary Layer’ Quart. J. Roy. Meteorol. Soc. 105, 811-827.

    Google Scholar 

  • Counihan, J.: 1975, ‘Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972’ Atmos. Environ. 9, 871-905.

    Google Scholar 

  • Cuxart, J., Bougeault, Ph., and Redelsperger, J. L.: 2000, ‘A Multiscale Turbulence Scheme Apt for LES and Mesoscale Modelling’ Quart. J. Roy. Meteorol. Soc. 126, 1-30.

    Google Scholar 

  • Deardorff, J. W.: 1970, ‘Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection’ J. Atmos. Sci. 27, 1211-1213.

    Google Scholar 

  • Frenzen, P. and Vogel, C. A.: 1992, ‘The Turbulent Kinetic Energy Budget in the Atmospheric Surface Layer: A Review and an Experimental Reexamination in the Field’ Boundary-Layer Meteorol. 60, 49-76.

    Google Scholar 

  • Fuerher, P. L. and Friehe, C. A.: 1999, ‘A Physically Based Turbulent Velocity Time Series Decomposition’ Boundary-Layer Meteorol. 90, 241-295.

    Google Scholar 

  • Garratt, J. R.: 1992, The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Hoxey, R. P. and Richards, P. J.: 1992, ‘Spectral Characteristics of the Atmospheric Boundary Layer near the Ground’ in 1st UK Wind Engineering Conference, Cambridge.

  • Hunt, J. C. R. and Carlotti, P.: 2001, ‘Statistical Structure of the High Reynolds Number Boundary Layer’ Flow Turbul. Combust., in press.

  • Hunt, J. C. R. and Morrison, J. F.: 2000, ‘Eddy Structure in Turbulent Boundary Layers’ Eur. J. Mech., B Fluids 19, 673-694.

    Google Scholar 

  • Juneja, A. and Brasseur, J. G.: 1999, ‘Characteristics of Subgrid-Resolved-Scale Dynamics in Anisotropic Turbulence, with Application to Rough-Wall Boundary Layers’ Phys. Fluids 11, 3054-3067.

    Google Scholar 

  • Khanna, S. and Brasseur, J. G.: 1997, ‘Analysis of Monin-Obukhov Similarity from Large-Eddy Simulation, J. Atmos. Sci. 345, 251-286.

    Google Scholar 

  • Khanna, S. and Brasseur, J. G.: 1998, ‘Three-Dimensional Buoyancy-and Shear-Induced Local Structure of the Atmospheric Boundary Layer’ J. Atmos. Sci. 55, 710-743.

    Google Scholar 

  • Kim, K. C. and Adrian, R. J.: 1999, ‘Very Large Scale Motion in the Outer Layer’ Phys. Fluids 11, 417-422.

    Google Scholar 

  • Lafore, J. P., Stein, J., Asencio, N., Bougeault, P., Ducrocq, V., Duron, J., Fisher, C., Hereil, P., Mascart, P., Pinty, J. P., Redelsperger, J. L., Richard, E., and Vila-Guerau de Arellano, J.: 1998, ‘The Meso-NH Atmospheric Simulation System. Part I: Adiabatic Formulation and Control Simulations’ Ann. Geophys. 16, 90-109.

    Google Scholar 

  • Louis, J. F.: 1979, ‘A ParametricModel of Vertical Eddy Fluxes in the Atmosphere’ Boundary-Layer Meteorol. 17, 187-202.

    Google Scholar 

  • Mason, P. J.: 1989, ‘Large-Eddy Simulation of the Convective Atmospheric Boundary Layer’ J. Atmos. Sci. 46, 1492-1516.

    Google Scholar 

  • Mason, P. J. and Thomson, D. J.: 1992, ‘Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers’ J. Fluid Mech. 242, 51-78.

    Google Scholar 

  • Moeng, C. H. and Sullivan, P. P.: 1994, ‘A Comparison of Shear-and Buoyancy-Driven Planetary Boundary Layer Flows’ J. Atmos. Sci. 51, 999-1022.

    Google Scholar 

  • Moin, P. and Kim, J.: 1982, ‘Numerical Investigation of Turbulent Channel Flow’ J. Fluid Mech. 118, 341-377.

    Google Scholar 

  • Panofsky, H. A., Tennekes, H., Lenschow, D. H., and Wyngaard, J. C.: 1977, ‘The Characteristics of Turbulent Velocity Components in the Surface Layer under Convective Conditions’ Boundary-Layer Meteorol. 11, 355-361.

    Google Scholar 

  • Porté-Agel, F., Meneveau C., and Parlange, M. C.: 2000, ‘A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer’ J. Fluid. Mech. 415, 261-284.

    Google Scholar 

  • Redelsperger, J. L. and Sommeria, G.: 1981, ‘Méthode de représentation de la turbulence d'échelle inférieure à la maille pour un modèle tridimensionnel de convection nuageuse’ Boundary-Layer Meteorol. 21, 509-530.

    Google Scholar 

  • Redelsperger, J. L. and Sommeria, G.: 1986, ‘Three-Dimensional Simulation of a Convective Storm: Sensitivity Studies on Subgrid Parameterization and Spatial Resolution’ J. Atmos. Sci. 43, 2619-2635.

    Google Scholar 

  • Schmidt, H. and Schumman, U.: 1989, ‘Coherent Structure of the Convective Boundary Layer Derived from Large Eddy Simulations’ J. Fluid Mech. 200, 511-562.

    Google Scholar 

  • Schumann U.: 1975, ‘Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli’ J. Comp. Phys. 18, 376-404.

    Google Scholar 

  • Sommeria, G.: 1976, ‘Three-Dimensional Simulation of Turbulent Processes in an Undisturbed Trade Wind Boundary Layer’ J. Atmos. Sci. 33, 216-241.

    Google Scholar 

  • Stull, R.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Sullivan, P. P., McWilliams, J. C., and Moeng, C. H.: 1994, ‘A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows’ Boundary-Layer Meteorol. 71, 247-276.

    Google Scholar 

  • Thérry, G. and Lacarrère, P.: 1983, ‘Improving the Eddy Kinetic Energy Model for Planetary Boundary Layer Description’ Boundary-Layer Meteorol. 25, 63-68.

    Google Scholar 

  • Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, 429 pp.

    Google Scholar 

  • Troen, I. and Mahrt, L.: 1986, ‘A Simple Model of the Atmospheric Boundary-Layer: Sensitivity to Surface Evaporation’ Boundary-Layer Meteorol. 37, 129-148.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1974, ‘The Evolution of a Convective Planetary Boundary Layer: A Higher Order Closure Model Study’ Boundary-Layer Meteorol. 7, 289-308.

    Google Scholar 

  • Wyngaard, J. C., Coté, O. R., and Isumi, Y.: 1971, ‘Local Free Convection, Similarity and the Budgets of Shear Stress and Heat Flux’ J. Atmos. Sci. 28, 1171-1182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redelsperger, J.L., Mahé, F. & Carlotti, P. A Simple And General Subgrid Model Suitable Both For Surface Layer And Free-Stream Turbulence. Boundary-Layer Meteorology 101, 375–408 (2001). https://doi.org/10.1023/A:1019206001292

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019206001292

Navigation