Skip to main content

A Framework for the Assessment and Creation of Subgrid-Scale Models for Large-Eddy Simulation

  • Conference paper
  • First Online:
Progress in Turbulence VII

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 196))

  • 888 Accesses

Abstract

We focus on subgrid-scale modeling for large-eddy simulation of incompressible turbulent flows. In particular, we follow a systematic approach that is based on the idea that subgrid-scale models should preserve fundamental properties of the Navier–Stokes equations and turbulent stresses. To that end, we discuss the symmetries and conservation laws of the Navier–Stokes equations, as well as the near-wall scaling, realizability and dissipation behavior of the turbulent stresses. Regarding each of these properties as a model constraint, we obtain a framework that can be used to assess existing and create new subgrid-scale models. We show that several commonly used velocity-gradient-based subgrid-scale models do not exhibit all the desired properties. Although this can partly be explained by incompatibilities between model constraints, we believe there is room for improvement in the properties of subgrid-scale models. As an example, we provide a new eddy viscosity model, based on the vortex stretching magnitude, that is successfully tested in large-eddy simulations of turbulent plane-channel flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Carati, G.S. Winckelmans, H. Jeanmart, J. Fluid Mech. 441, 119 (2001)

    Article  Google Scholar 

  2. D.R. Chapman, G.D. Kuhn, J. Fluid Mech. 170, 265 (1986)

    Article  Google Scholar 

  3. A.F. Cheviakov, M. Oberlack, J. Fluid Mech. 760, 368 (2014)

    Article  MathSciNet  Google Scholar 

  4. R.A. Clark, J.H. Ferziger, W.C. Reynolds, J. Fluid Mech. 91, 1 (1979)

    Article  Google Scholar 

  5. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, Phys. Fluids A 3, 1760 (1991)

    Article  Google Scholar 

  6. A. Leonard, in Turbulent Diffusion, ed. by F.N. Frenkiel, R.E. Munn. Environmental Pollution, Adv. Geophys., vol. 18 A (Academic Press, New York, 1974), pp. 237–248

    Google Scholar 

  7. L. Marstorp, G. Brethouwer, O. Grundestam, A.V. Johansson, J. Fluid Mech. 639, 403 (2009)

    Article  Google Scholar 

  8. R.D. Moser, J. Kim, N.N. Mansour, Phys. Fluids 11, 943 (1999)

    Article  Google Scholar 

  9. F. Nicoud, F. Ducros, Flow Turbul. Combust. 62, 183 (1999)

    Article  Google Scholar 

  10. F. Nicoud, H. Baya Toda, O. Cabrit, S. Bose, J. Lee, Phys. Fluids 23, 085106 (2011)

    Article  Google Scholar 

  11. M. Oberlack, Annual Research Briefs (Center for Turbulence Research, Stanford University, Stanford, 1997)

    Google Scholar 

  12. M. Oberlack, in Theories of Turbulence, ed. by M. Oberlack, F. Busse. International Centre for Mechanical Sciences, vol. 442 (Springer, Vienna, 2002), pp. 301–366

    Google Scholar 

  13. D. Razafindralandy, A. Hamdouni, M. Oberlack, Eur. J. Mech. B 26, 531 (2007)

    Article  Google Scholar 

  14. W. Rozema, H.J. Bae, P. Moin, R. Verstappen, Phys. Fluids 27, 085107 (2015)

    Article  Google Scholar 

  15. P. Sagaut, Large Eddy Simulation for Incompressible Flows, 3rd edn. (Springer, Berlin, 2006)

    MATH  Google Scholar 

  16. M.H. Silvis, R.A. Remmerswaal, R. Verstappen, Phys. Fluids 29, 015105 (2017)

    Google Scholar 

  17. J. Smagorinsky, Mon. Weather Rev. 91, 99 (1963)

    Article  Google Scholar 

  18. C.G. Speziale, J. Fluid Mech. 156, 55 (1985)

    Article  Google Scholar 

  19. F.X. Trias, D. Folch, A. Gorobets, A. Oliva, Phys. Fluids 27, 065103 (2015)

    Article  Google Scholar 

  20. R. Verstappen, J. Sci. Comput. 49, 94 (2011)

    Article  MathSciNet  Google Scholar 

  21. R.W.C.P. Verstappen, A.E.P. Veldman, J. Comput. Phys. 187, 343 (2003)

    Article  MathSciNet  Google Scholar 

  22. A.W. Vreman, Phys. Fluids 16, 3670 (2004)

    Article  Google Scholar 

  23. B. Vreman, B. Geurts, H. Kuerten, J. Fluid Mech. 278, 351 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge Professor Martin Oberlack for stimulating discussions during several stages of this project. Professor Michel Deville is kindly acknowledged for sharing his insights relating to nonlinear subgrid-scale models and realizability. This work is part of the research programme Free Competition in the Physical Sciences with project number 613.001.212, which is financed by the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurits H. Silvis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Silvis, M.H., Remmerswaal, R.A., Verstappen, R. (2017). A Framework for the Assessment and Creation of Subgrid-Scale Models for Large-Eddy Simulation. In: Örlü, R., Talamelli, A., Oberlack, M., Peinke, J. (eds) Progress in Turbulence VII. Springer Proceedings in Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-57934-4_19

Download citation

Publish with us

Policies and ethics