Skip to main content
Log in

Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The lipid and biochemical composition of the haptophyte Isochrysis galbana TK1 was examined. Cultures were grown at 15 °C and 30 °C, and harvested in the exponential and early stationary growth phases. Carbohydrate and protein content varied at the two culture temperatures and growth phases. The highest protein content was found at the exponential growth phase at 15 °C, and the highest carbohydrate content was found at the stationary phase at the same culture temperature. Lipid accumulated in the stationary growth phase and its content was higher at 30 °C than at 15 °C regardless of the growth phase. The neutral lipids were the major class of lipid found in all the cultures. The stationary phase culture had a higher proportion of neutral lipids than the exponential phase culture and the proportion decreased slightly when culture temperature was increased from 15 °C to 30 °C. Phospholipid levels remained constant at the two temperatures, but slightly decreased in the stationary phase. Glycolipids in the exponentially growing cells were higher than those from stationary growth phase and increased with temperature. Polyunsaturated fatty acids (PUFAs) predominated in glycolipids and phospholipids. Cells grown at 15 °C contained higher proportion of 18:3 (n–3) and 22:6 (n–3) with a corresponding decrease in 18:2 (n–6), monounsaturated and saturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaronson S (1973) Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromona danica. J. Phycol. 9: 111–3.

    Article  CAS  Google Scholar 

  • Aaronson S, Bernet T, Dubingsky Z (1980) Microalgae as a source of chemicals and natural products. In Shelef G, Soeder CJ (Eds), AlgaeBiomass: Production and Use. Elsevier/North Holland Biomedical Press, Amsterdam, 575–601.

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  • Brown MR, Dunstan GA, Jeffrey SW, LeRoi JM (1993) The influence of irradiance on the biochemical composition of the Prymnesiophyte Isochrysissp. (CLONE TISO). J. Phycol. 29: 601–612.

    Article  CAS  Google Scholar 

  • Brown MR, Farmer CL (1994) Riboflavin content of six species of microalgae used in mariculture. J. appl. Phycol. 6: 61–65.

    Article  CAS  Google Scholar 

  • De Pauw NM, Morales J, Persoone G (1984) Mass culture ofmicroalgae in aquaculture systems: progress and constraints. Hydrobiologia 116/117: 121–134.

    Article  Google Scholar 

  • Dubois5 M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Garland CD (1993) Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. appl. Phycol. 5: 71–83.

    Article  CAS  Google Scholar 

  • Fabregas J, Herrero C, Cabezas B, Abalde J (1986) Biomass production and biochemical composition in mass cultures of the marine microalga Isochrysis galbanaParke at varying nutrient concentrations. Aquaculture 53: 101–113.

    Article  CAS  Google Scholar 

  • Henderson RJ, Mackinlay EE (1989) Effect of temperature on lipid composition of the marine cryptomonad Chroomonas salina. Phytochemistry 28: 2943–2498.

    Article  CAS  Google Scholar 

  • Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In Norris JR, Ribbons DW (Eds), Methods in Microbiology, vol. 5B, Academic Press, London: 244–279.

    Google Scholar 

  • Hodgson PA, Henderson RJ, Sargent JR, Leftley JW(1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata(Eustigmatophyceae) during batch culture. J. appl. Phycol. 3: 169–181.

    Article  CAS  Google Scholar 

  • Jeffrey SW, Brown MR, Volkman JK (1994) Haptophyte as feed stocks in mariculture. In Green JC, Leadbeater BSC (Eds), The Haptophyte Algae, Clarendon Press, Oxford, 287–302.

    Google Scholar 

  • Kates M (1986) Technology of lipidology. Isolation, analysis and identification of lipids. In Burdon RH, Knippenberg PH (Eds), Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier, Amsterdam, 106–107.

    Google Scholar 

  • Kochert G (1978) Quantitation of the macromolecular components of microalgae. In Hellebust JA, Craigie JS (Eds), Handbook of Phycological Methods: Physiology and Biochemical Methods. Cambridge University Press, Cambridge, 189–195.

    Google Scholar 

  • Koven WM, Kissil GWM, Tandler A (1989) Lipid and n–3 fatty acid requirement of Sparus auratalarvae during starvation and feeding. Aquaculture 79: 185–191.

    Article  CAS  Google Scholar 

  • Lepage G, Roy CC (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391–1396.

    PubMed  CAS  Google Scholar 

  • López Alonso D, Molina Grima E, Sánchez Pórez JA, García Sánchez JL, García Camacho F (1992) Isolation of clones of Isochrysis galbanarich in eicospapentaenoic acid. Aquaculture 102: 363–371.

    Article  Google Scholar 

  • LópezAlonso D, Segura del Castillo CI, García Sánchez JL, Sánchez Pérez JA, García Camacho F (1994) Quantitative genetics of fatty acid variation in Isochrysis galbana(Prymnesiophyceae) and Phaeodactylum tricornutum(Bacillariophyceae). J. Phycol. 30: 55–558.

    Article  Google Scholar 

  • Marsh JB, Weinstein DB (1966) Simple charring method for determination of lipids. J. Lipid Res. 7: 574–576.

    PubMed  CAS  Google Scholar 

  • Molina Grima E, García Camacho F, Sánchez Pérez JA, García Sánchez JL (1994a) Biochemical productivity and fatty acid profiles of Isochrysis galbanaParke and Teraselmissp. as a function of incident light intensity. Process Biochem. 29: 119–126.

    Article  CAS  Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, Acien Fernandez FG, López Alonso D, Segura del Castillo CI (1994b) Preservation of the marine microalga, Isochrysis galbana: influence on the fatty acid profile. Aquaculture 123: 377–385.

    Article  CAS  Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, García Sánchez JL, Fernandez Sevilla JM (1995) Variation of fatty acid profile with solar cycle in outdoor chemostat culture of Isochrysis galbanaALII4. J. appl. Phycol. 7: 129–134.

    Article  Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, Fernandez Sevilla JM, Acien Fernandez FG (1994c) Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbanain chemostat culture. Appl. Microbiol. Biotechnol. 41: 23–27.

    Google Scholar 

  • Mortensen SK, Borsheim KY, Rainuzzo JR, Knutsen G (1988) Fatty acid and elemental composition of the marine diatom Chaetoceros gracilisSchutt. Effects of silicate deprivation, temperature and light intensity. J. exp. mar. Biol. Ecol. 122: 173–185.

    Article  CAS  Google Scholar 

  • Myers J (1980) On the algae: thoughts about physiology and measurements of efficiency. In Falkowski PG (ed.), Primary Productivity in the Sea. Plenum Press, New York, 1–16.

    Google Scholar 

  • Reitan RI, Rainuzzo JR, Oie G, Olsen Y(1993) Nutritional effects of algal addition in firstfeeding of turbot (Scophthalmus maximus L.). Aquaculture 118: 257–275.

    Article  CAS  Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol. 26: 393–399.

    Article  CAS  Google Scholar 

  • Sakamato T, Los DA, Higashi S, Wada H, Nishida I, Ohmori M, Murata N (1994) Cloning of !3 desaturase from cyanobacteria and its use in altering the degree of membrane lipid unsaturation. Plant Mol. Biol. 26: 249–263.

    Article  Google Scholar 

  • Seto A, Wang HL, Hesseltine CW (1984) Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil Chem. Soc. 61: 892–894.

    CAS  Google Scholar 

  • Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J. Phycol. 25: 686–692.

    Article  CAS  Google Scholar 

  • Sukenik A, Wahnon R (1991) Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbana. Aquaculture 97: 61–72.

    Article  CAS  Google Scholar 

  • Thompson PA, Guo MX, Harrison PJ, Whyte JNC (1992a) Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J. Phycol. 28: 481–488.

    Article  CAS  Google Scholar 

  • Thompson PA, Guo MX, Harrison PJ, Whyte JNC (1992b) Effects of variation in temperature. II. On the fatty acid composition of eight species of marine phytoplankton. J. Phycol. 28: 488–497.

    Article  CAS  Google Scholar 

  • Töpfer R, Martini N, Schell J (1995) Modification of plant lipid synthesis. Science 268: 681–685.

    Google Scholar 

  • Walne PR (1979) Culture of bivalve molluscs–50 years experience at Conwy. Fishing News Books Ltd., Farnham, 181–185.

    Google Scholar 

  • Whyte JNC, Bourne N, Hodgson CA (1989) Influence of algal diets on biochemical composition and energy reserves in Patinopecten yessoensis(Jay) larvae. Aquaculture 78: 333–347.

    Article  CAS  Google Scholar 

  • Yongmanitchai W, Ward OP (1989) Omega-3 fatty acids: alternative sources of production. Process Biochem. August: 117–25.

  • Zhu CJ, Lee YK, Chao TM, Lim SH (1997) Diurnal changes in gross chemical composition and fatty acid profiles of Isochrysis galbanaTK1 in outdoor closed tubular photobioreactors. J. mar. Biotechnol. 5: 153–157.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, C.J., Lee, Y.K. & Chao, T.M. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. Journal of Applied Phycology 9, 451–457 (1997). https://doi.org/10.1023/A:1007973319348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007973319348

Navigation