Advertisement

Multivalued Parametric Variational Inequalities with α-Pseudomonotone Maps

  • G. Kassay
  • J. Kolumban
Article

Abstract

In this paper, we consider variational inequalities with pseudomonotone maps which depend on a parameter and study the behavior of their solutions. The main result gives sufficient conditions for the stability of the initial variational inequality problem under small perturbations of the parameter. As an application, we obtain a stability result for a class of parametric optimization problems.

multivalued variational inequalities α-pseudomonotone maps parametric optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartman, G. J., and Stampacchia, G., On Some Nonlinear Elliptic Differential Functional Equations, Acta Mathematica, Vol. 115, pp. 271–310, 1966.Google Scholar
  2. 2.
    Kinderlehrer, D., and Stampacchia, G., An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, NY, 1980.Google Scholar
  3. 3.
    Zeidler, E., Nonlinear Functional Analysis and Its Applications, Vols. 2A and 2B, Springer Verlag, Berlin, Germany, 1990.Google Scholar
  4. 4.
    Karamardian, S., Complementarity Problems over Cones with Monotone and Pseudomonotone Maps, Journal of Optimization Theory and Applications, Vol. 18, pp. 445–454, 1976.Google Scholar
  5. 5.
    Cottle, R. W., and Yao, J. C., Pseudomonotone Complementarity Problems in Hilbert Space, Journal of Optimization Theory and Applications, Vol. 75, pp. 281–295, 1992.Google Scholar
  6. 6.
    Yao, J. C., Multivalued Variational Inequalities with K-Pseudomonotone Operators, Journal of Optimization Theory and Applications, Vol. 83, pp. 391–403, 1994.Google Scholar
  7. 7.
    Ding, X. P., and Tarafdar, E., Monotone Generalized Variational Inequalities and Generalized Complementarity Problems, Journal of Optimization Theory and Applications, Vol. 88, pp. 107–122, 1996.Google Scholar
  8. 8.
    Schaible, S., and Yao, J. C., On the Equivalence of Nonlinear Complementarity Problems and Least-Element Problems, Mathematical Programming, Vol. 70, pp. 191–200, 1995.Google Scholar
  9. 9.
    Hadjisavvas, N., and Schaible, S., Quasimonotone Variational Inequalities in Banach Spaces, Journal of Optimization Theory and Applications, Vol. 90, 1996.Google Scholar
  10. 10.
    Karamardian, S., and Schaible, S., Seven Kinds of Monotone Maps, Journal of Optimization Theory and Applications, Vol. 66, pp. 37–46, 1990.Google Scholar
  11. 11.
    Avriel, M., Dievert, W. E., Schaible, S., and Zang, I., Generalized Concavity, Plenum Publishing Corporation, New York, NY, 1988.Google Scholar
  12. 12.
    Dafermos, S., Sensitivity Analysis in Variational Inequalities, Mathematics of Operations Research, Vol. 13, pp. 421–434, 1988.Google Scholar
  13. 13.
    Kassay, G., and KolumbÁn, I., Implicit Function Theorems for Monotone Mappings, Preprint 7, Babeş-Bolyai University Cluj, Romania, pp. 1–27, 1988.Google Scholar
  14. 14.
    Kassay, G., and KolumbÁn, I., Implicit Functions and Variational Inequalities for Monotone Mappings, Preprint 7, Babeş-Bolyai University Cluj, Romania, pp. 79–92, 1989.Google Scholar
  15. 15.
    Alt, W., and KolumbÁn, I., An Implicit-Function Theorem for a Class of Monotone Generalized Equations, Kybernetika, Vol. 29, pp. 210–221, 1993.Google Scholar
  16. 16.
    Martos, B., Nonlinear Programming: Theory and Methods, Akadémiai Kiadó, Budapest, Hungary, 1975.Google Scholar
  17. 17.
    Karamardian, S., Schaible, S., and Crouzeix, J. P., Characterizations of Generalized Monotone Maps, Journal of Optimization Theory and Applications, Vol. 76, pp. 399–413, 1993.Google Scholar
  18. 18.
    Aubin, J. P., and Frankowska, H., Set-Valued Analysis, Birkhaüser, Boston, Massachusetts, 1990.Google Scholar
  19. 19.
    Robinson, S. M., Regularity and Stability for Convex Multivalued Functions, Mathematics of Operations Research, Vol. 1, pp. 130–143, 1976.Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • G. Kassay
    • 1
  • J. Kolumban
    • 2
  1. 1.Faculty of MathematicsBabes-Bolyai UniversityClujRomania
  2. 2.Faculty of MathematicsBabes-Bolyai UniversityClujRomania

Personalised recommendations