Skip to main content
Log in

Identification of 18 vector species belonging to Group I, Group II, and Group III ‘Dirty 22’ species known to contaminate food and spread foodborne pathogens: DNA barcoding study of public health importance

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The US Food and Drug Administration (US-FDA) uses the presence of flth and extraneous materials as one of the criteria in implementing regulatory actions and assessing food adulteration of public health importance. So far, 22 common pest species (‘Dirty 22’ species) have been considered by this agency for the spreading of foodborne illness, and their presence is an indicator of unsanitary conditions in food processing and storage facilities. Recently, we classifed the ‘Dirty 22’ species into four groups: Group I (four cockroach species), Group II (two ant species), Group III (12 fy species), and Group IV (four rodent species), and described two molecular diagnostic methods for group-specifc identifcation. We developed a PCR-RFLP assay based on rRNA gene for the detection and differentiation of Group I ‘Dirty 22’ species. Later, we designed three Group II ‘Dirty 22’ species-specifc nested PCR primer sets and sequence characterized the rRNA, elongation factor 1-alpha (EF-1a), and wingless (WNT-1) loci. In this follow-up study, we have evaluated the robustness of fve unique sets of published primers targeting the mitochondrial cytochrome oxidase I (COI) gene for insect barcoding. With modifed PCR conditions, we successfully used COI barcoding for 18 members of Group I, Group II, and Group III ‘Dirty 22’ species. Results of this study reveal that COI barcoding is an effective tool for rapid identifcation of insects of Groups I, II, and III ‘Dirty 22’ species known to contaminate food and spread foodborne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anbalagan, S., Arunprasanna, V., Kannan, M., Dinakaran, S. and Krishnan, M. (2015) Simulium (Gomphostilbia) (Diptera: Simuliidae) from Southern Western Ghats, India: two new species and DNA barcoding. Acta Tropica 149, 94–105.

    Article  CAS  Google Scholar 

  • Aransay, A. M., Scoulica, E., Chaniotis, B. and Tselentis, Y. (1999) Typing of sand fies from Greece and Cyprus by DNA polymorphism of 18S rRNA gene. Insect Molecular Biology 8, 179–184.

    Article  CAS  Google Scholar 

  • Banerjee, D., Kumar, V., Maity, A., Ghosh, B., Tyagi, K., Singha, D., Kundu, S., Laskar, B. A., Naskar, A. and Rath, S. (2015) Identifcation through DNA barcoding of Tabanidae (Diptera) vectors of surra disease in India. Acta Tropica 150, 52–58. doi: 10.1016/j.actatropica.2015.06.023.

    Article  Google Scholar 

  • Biles, P. V. and Ziobro, G. C. (2000) Regulatory action criteria for flth and other extraneous materials. IV. Visual detection of hair in food. Regulatory Toxicology and Pharmacology 32, 73–77.

    Article  CAS  Google Scholar 

  • Blacket, M. J., Rice, A. D., Semeraro, L. and Malipati, M. B. (2015) DNA-based identifcations reveal multiple introductions of the vegetable leafminer Liriomyza sativae (Diptera: Agromyzidae) into the Torres Strait Islands and Papua New Guinea. Bulletin of Entomological Research 105, 533–544. doi: 10.1017/S0007485315000383.

    Article  CAS  Google Scholar 

  • Bybee, S. M., Taylor, S. D., Riley Nelson, C. and Whiting, M. F. (2004) A phylogeny of robber fies (Diptera: Asilidae) at the sub familial level: molecular evidence. Molecular Phylogenetics and Evolution 30, 789–797.

    Article  CAS  Google Scholar 

  • Caterino, M. S., Cho, S. and Sperling, F. A. (2000) The current state of insect molecular systematics: a thriving Tower of Babel. Annual Review of Entomology 45, 1–54. doi: 10.1146/annurev.ento.45.1.1.

    Article  CAS  Google Scholar 

  • Confitti, I. M., Pruess, K. P., Cywinska, A., Powers, T. O. and Currie, D. C. (2013) DNA barcoding distinguishes pest species of the black fy genus Cnephia (Diptera: Simuliidae). Journal of Medical Entomology 50, 1250–1260.

    Article  Google Scholar 

  • Cruickshank, R. H., Johnson, K. P., Smith, V. S., Adams, R. J., Clayton, D. H. and Page, R. D. (2001) Phylogenetic analysis of partial sequences of Elongation Factor 1alpha identifes major groups of lice (Insecta: Phthiraptera). Molecular Phylogenetics and Evolution 19, 202–215.

    Article  CAS  Google Scholar 

  • Cywinska, A., Hunter, F. F. and Hebert, P. D. N. (2006) Identifying Canadian mosquito species through DNA barcodes. Medical and Veterinary Entomology 20, 413–424.

    Article  CAS  Google Scholar 

  • Danforth, B. N., Brady, S. G., Sipes, S. D. and Pearson, A. (2004) Single-copy nuclear genes recover cretaceous-age divergences in bees. Systematic Biology 53, 309–326.

    Article  Google Scholar 

  • Danforth, B. N. and Ji, S. (1998) Elongation Factor-1α occurs as two copies in bees: Implications for phylogenetic analysis of EF-1α sequences in insects. Molecular Biology and Evolution 15, 225–235.

    Article  CAS  Google Scholar 

  • Dittmar, K., Porter, M. L., Murray, S. and Whiting, M. F. (2006) Molecular phylogenetic analysis of nycteribiid and streblid bat fies (Diptera: Brachycera, Calyptratae): implications for host associations and phylogeographic origins. Molecular Phylogenetics and Evolution 38, 155–170.

    Article  CAS  Google Scholar 

  • FDA [Food and Drug Administration] (2004) Federal Food, Drug, and Cosmetic Act. As Amended through December 31, 2004. U.S. Department of Health and Human Services, Government Printing Offce, Washington, DC. Available at: https://doi.org/wwwmedical.cms.itri.org.tw/pdf/u01.pdf.

    Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNAprimers for amplifcation of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.

    CAS  PubMed  Google Scholar 

  • Fournier, D., Tindo, M., Kenne, M., Mbenoun Masse, P. S., Van Bossche, V., de Coninck, E. and Aron, S. (2012) Genetic structure, nestmate recognition and behaviour of two cryptic species of the invasive big-headed ant Pheidole megacephala. PLoS One 7(2): e31480. doi: 10.1371/journal.pone.0031480.

    Article  CAS  Google Scholar 

  • Giribet, G., Edgecombe, G. D. and Wheeler, W. C. (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413, 157–161.

    Article  CAS  Google Scholar 

  • Gunay, F., Alten, B., Simsek, F., Aldemir, A. and Linton, Y.-M. (2015) Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Tropica 143, 112–120.

    Article  Google Scholar 

  • Hajibabaei, M., Janzen, D.H., Burns, J.M., Hallwachs, W. and Hebert, P.D.N. (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America 103, 968–971.

    Article  Google Scholar 

  • Hebert, P. D., Cywinska, A., Ball, S. L. and deWaard, J. R. (2003a) Biological identifcations through DNA barcodes. Proceedings of the Royal Society B 270, 313–321.

    Article  CAS  Google Scholar 

  • Hebert, P. D., Ratnasingham, S. and deWaard, J. R. (2003b) Barcoding animal life: cytochrome c oxidase subunit divergences among closely related species. Proceedings of the Royal Society B 270, S96–99.

    CAS  PubMed  Google Scholar 

  • Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D. H. and Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfy Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101, 14812–14817.

    Article  CAS  Google Scholar 

  • Jones, Y. L., Peters, S. M., Weland, C., Ivanova, N. V. and Yancy, H. F. (2013) Potential use of DNA barcodes in regulatory science: identifcation of the, U.S. Food and Drug Administration’s “Dirty 22,” contributors to the spread of foodborne pathogens. Journal of Food Protection 76, 144–149. doi: 10.4315/0362-028X.JFP-12-168.

    Article  Google Scholar 

  • Jordaens, K., Goergen, G., Virgilio, M., Backeljau, T., Vokaer, A. and De Meyer M.(2015) DNAbarcodingtoimprove the taxonomy of the Afrotropical hoverfies (Insecta: Diptera: Syrphidae). PLoS One 10(10): e0140264. doi: 10.1371/journal.pone.0140264.

    Article  Google Scholar 

  • Kato, H., Cáceres A. G., Gomez E. A., Mimori, T., Uezato, H., Marco, J. D., Barroso, P.A., Iwata, H. and Hashiguchi, Y. (2008) Molecular mass screening to incriminate sand fy vectors of Andean-type cutaneous leishmaniasis in Ecuador and Peru. The American Journal of Tropical Medicine and Hygiene 79, 719–721.

    Article  Google Scholar 

  • Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.

    Article  CAS  Google Scholar 

  • Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A. and Janzen, D. H. (2005) Use of DNA barcodes to identify fowering plants. Proceedings of the National Academy of Sciences of the United States of America 102, 8369–8374. doi: 10.1073/pnas.0503123102.

    Article  CAS  Google Scholar 

  • May, R.M. (1988) How many species are there on Earth? Science 241, 1441–1449. doi: 10.1126/science.241.4872.1441.

    Article  CAS  Google Scholar 

  • Meyer, C. P. (2003) Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversifcation patterns in the tropics. Biological Journal of the Linnean Society 79, 401–459.

    Article  Google Scholar 

  • Mukha, D. V., Sidorenko, A. P., Lazebnaya, I. V., Wiegmann, B. M. and Schal, C. (2000) Analysis of intra species polymorphism in the ribosomal DNA cluster of the cockroach Blattella germanica. Insect Molecular Biology 9, 217–222.

    Article  CAS  Google Scholar 

  • Murat, S., Hopfen, C. and McGregor, A. P. (2010) The function and evolution of Wnt genes in arthropods. Arthropod Structure & Development 39, 446–452. doi: 10.1016/j.asd.2010.05.007.

    Article  CAS  Google Scholar 

  • Nakano, A. and Honda, J. (2015) Use of DNA sequences to identify forensically important fy species and their distribution in the coastal region of Central California. Forensic Science International 253, 1–13. doi: 10.1016/j.forsciint.2015.05.001.

    Article  CAS  Google Scholar 

  • Ng’endo, R. N., Osiemo, Z. B. and Brandl, R. (2013) DNA barcodes for species identifcation in the hyperdiverse ant genus Pheidole (Formicidae: Myrmicinae). Journal of Insect Science 13, 27. Available online: https://doi.org/wwwwww.insectscience.org/13.27.

    PubMed  PubMed Central  Google Scholar 

  • Nirmala, X., Hypsa, V. and Zurovec, M. (2001) Molecular phylogeny of Calyptratae (Diptera: Brachycera): the evolution of 18S and 16S ribosomal rDNAs in higher dipterans and their use in phylogenetic inference. Insect Molecular Biology 10, 475–485.

    CAS  PubMed  Google Scholar 

  • Nzelu, C. O., Cáceres, A. G., Arrunátegui-Jiménez, M. J., Lañas-Rosas, M. F., Yañez-Trujillano, H. H., Luna-Caipo, D.V., Holguín-Mauricci, C. E., Katakura, K., Hashiguchi, Y. and Kato, H. (2015) DNAbarcoding for identifcation of sand fy species (Diptera: Psychodidae) from leishmaniasis-endemic areas of Peru. Acta Tropica 145, 45–51. doi: 10.1016/j.actatropica.2015.02.003.

    Article  CAS  Google Scholar 

  • Olsen, A. R. (1998a) Regulatory action criteria for flth and other extraneous materials: I. Review of hard or sharp foreign objects as physical hazards in food. Regulatory Toxicology and Pharmacology 28, 181–189.

    Article  CAS  Google Scholar 

  • Olsen, A. R. (1998b) Regulatory action criteria for flth and other extraneous materials: II. Allergenic mites: an emerging food safety issue. Regulatory Toxicology and Pharmacology 28, 190–198.

    Article  CAS  Google Scholar 

  • Olsen, A. R. (1998c) Regulatory action criteria for flth and other extraneous materials: III. Review of fies and foodborne enteric disease. Regulatory Toxicology and Pharmacology 28, 199–211.

    Article  CAS  Google Scholar 

  • Olsen, A. R., Gecan, J. S., Ziobro, G. S. and Bryce, J. R. (2001) Regulatory action criteria for flth and other extraneous materials: V. Strategy for evaluating hazardous and nonhazardous flth. Regulatory Toxicology and Pharmacology 33, 363–392.

    Article  CAS  Google Scholar 

  • Park, S. H., Zhang, Y., Piao, H., Yu, D. H., Jeong, H.J., Yoo, G. Y., Chung, U., Jo, T. H. and Hwang, J. J. (2009) Use of cytochrome c oxidase subunit I (COI) nucleotide sequences for identifcation of the Korean Luciliinae fy species (Diptera: Calliphoridae) in forensic investigations. Journal of Korean Medical Science 24, 1058–1063. doi: 10.3346/jkms.2009.24.6.1058.

    Article  CAS  Google Scholar 

  • Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.

    Google Scholar 

  • Simon, S., Schierwater, B. and Hadrys, H. (2010) On the value of Elongation factor-1α for reconstructing pterygote insect phylogeny. Molecular Phylogenetics and Evolution 54, 651–656.

    Article  Google Scholar 

  • Schubert, M., Holland, L. Z., Holland, N. D. and Jacobs, D.K. (2000) A phylogenetic tree of the Wnt genes based on all available full-length sequences, including fve from the cephalochordate amphioxus. Molecular Biology and Evolution 17, 1896–1903.

    Article  CAS  Google Scholar 

  • Sulaiman, I. M., Anderson, M., Khristova, M., Tang, K., Sulaiman, N., Phifer, E., Simpson, S. and Kerdahi, K. (2011) Development of a PCR-restriction fragment length polymorphism protocol for rapid detection and differentiation of four cockroach vectors (Group I “Dirty 22” species) responsible for food contamination and spreading of foodborne pathogens: public health importance. Journal of Food Protection 74, 1883–1890. doi: 10.4315/0362-028X.JFP-11-242.

    Article  CAS  Google Scholar 

  • Sulaiman, I. M., Anderson, M., Oi, D. H., Simpson, S. and Kerdahi, K. (2012) Multilocus genetic characterization of two ant vectors (Group II “Dirty 22” species) known to contaminate food and food products and spread foodborne pathogens. Journal of Food Protection 75, 1447–1452. doi: 10.4315/0362-028X.JFP-12-098.

    Article  CAS  Google Scholar 

  • Sulaiman, I. M., Fayer, R., Bern, C., Gilman, R. H., Trout, J.M., Schantz, P.M., Das, P., Lal, A. A. and Xiao, L. (2003a) Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerging Infectious Diseases 9, 1444–1452.

    Article  CAS  Google Scholar 

  • Sulaiman, I. M., Fayer, R., Lal, A. A., Trout, J. M., Schaefer, F. W. III and Xiao, L. (2003b) Molecular characterization of microsporidia indicates that wild mammals harbor host-adapted Enterocytozoon spp. as well as human-pathogenic Enterocytozoon bieneusi. Applied and Environmental Microbiology 69, 4495–4501. doi: 10.1128/AEM.69.8.4495-4501.2003.

    Article  CAS  Google Scholar 

  • Sulaiman, I. M., Jacobs, E., Simpson, S. and Kerdahi, K. (2014) Molecular identifcation of isolated fungi from unopened containers of Greek yorgurt by DNA sequencing of internal transcribed spacer region. Pathogens 3, 499–509. doi:10.3390/pathogens3030499.

    Article  CAS  Google Scholar 

  • Sulaiman, I. M., Lal, A. A. and Xiao, L. (2001) A population genetic study of the Cryptosporidium parvum human genotype parasites. Journal of Eukaryotic Microbiology (Suppl. 1), 24S–27S.

    Google Scholar 

  • Sulaiman, I. M., Lal, A. A. and Xiao, L. (2002) Molecular phylogeny and evolutionary relationships of Crypto-sporidium parasites at the actin locus. Journal of Parasitology 88, 388–394.

    Article  CAS  Google Scholar 

  • Sulaiman, I. M., Torres, P., Simpson, S., Kerdahi, K. and Ortega, Y. (2013) Sequence characterization of heat shock protein gene of Cyclospora cayetanensis isolates from Nepal, Mexico, and Peru. Journal of Parasitology 99, 379–382. doi: 10.1645/GE-3114.1.

    Article  CAS  Google Scholar 

  • Varadínová Z., Wang, Y. J., Kučerová Z., Stejskal, V., Opit, G., Cao, Y., Li, F. J. and Li, Z. (2015) COI barcode based species-specifc primers for identifcation of fve species of stored-product pests from genus Cryptolestes (Coleoptera: Laemophloeidae). Bulletin of Entomological Research 105, 202–209.

    Article  Google Scholar 

  • von Beeren, C., Stoeckle, M. Y., Xia, J., Burke, G. and Kronauer, D. J. (2014) Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana). Scientifc Reports 5, 8297. doi:10.1038/srep08297.

    Article  Google Scholar 

  • Yue, Q., Wu, K., Qiu, D., Hu, J., Liu, D., Wei, X., Chen, J. and Cook, C. E. (2014) A formal re-description of the cockroach Hebardina concinna anchored on DNA Barcodes confrms wing polymorphism and identi-fes morphological characters for feld identifcation. PLoS ONE 9(9): e106789. doi: 10.1371/journal.pone. 0106789.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irshad M. Sulaiman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, I.M., Jacobs, E., Simpson, S. et al. Identification of 18 vector species belonging to Group I, Group II, and Group III ‘Dirty 22’ species known to contaminate food and spread foodborne pathogens: DNA barcoding study of public health importance. Int J Trop Insect Sci 37, 1–10 (2017). https://doi.org/10.1017/S1742758416000217

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758416000217

Key words

Navigation