Skip to main content
Log in

Differentiation of some populations of Aedes aegypti (Diptera: Culicidae) in three areas of Lagos State, Nigeria, using wing morphometry

  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Diversity amongst the different populations is one of the problems in the control of medically important mosquitoes. Wing morphometry was used to identify within-species variation amongst some populations of Aedes aegypti in three areas of Lagos State, Nigeria. Ten landmarks on the right wing of adult female Ae. aegypti mosquitoes were digitized using TPSdig software. Relative distances of the veins and interpoints were calculated as well as the Euclidean distances based on these relative distances. In three (50%) of the interpoints, the relative distances were significant (P < 0.05) to both the Brown- Forsythe F ratio and Welch ANOVA. The highest Euclidean distance of 7.738 was between Ebute Metta 2 and Badagry; the lowest of 4.426 was between Ikorodu and Ebute Metta 2. The distance between Ebute Metta 1 and Ebute Metta 2 was 5.867, which is more than the distance between Ebute Metta 2 and Ikorodu. Three groups of Ae. aegypti were identifed, and the differences in lengths and interpoints observed on the wing veins suggest a possible morphological divergence amongst populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bosio C. F., Harrington L. C., Jones J. W. and Scott T. W. (2005) Genetic structUre of Aedes aegypti populations in Thailand using mitochondrial DNA. The American Journal of Tropical Medicine and Hygiene 72, 434–442.

    Article  CAS  Google Scholar 

  • Brown J. E., McBride C. S., Johnson P., Ritchie S., Paupy C., Bossin H., Lutomiah J., Fernandez-Salas I., Ponlawat A., Cornel A. J., Black 4th W. C., Gorrochotegui-Escalante N., Urdaneta-Marquez L., Sylla M., Slotman M., Murray K. O., Walker C. and Powell J. R. (2011) Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proceedings of the Royal Society B: Biological Sciences 278, 2446–2454. doi:10.1098/rspb.2010.2469.

    Article  Google Scholar 

  • Chhilar J. S. (2014) Morphometric analysis of taxonomic characters of malaria vector mosquito Anopheles (Cellia) subpictus Grassi (Diptera: Culicidae). Journal of Entomology and Zoology Studies 2, 32–38.

    Google Scholar 

  • Craig G.B., Vandehey Jr R. C. and Hickey W. A. (1961) Genetic variability in populations of Aedes aegypti. Bulletin of the World Health Organization 24, 527–539.

    PubMed  PubMed Central  Google Scholar 

  • Demirci G., Lee Y., Lanzaro G. C. and Alten B. (2012) Alti-tudinal genetic and morphometric variation among populations of Culex theileri Theobald (Diptera: Culicidae) from northeastern Turkey. Journal of Vector Ecology 37, 197–209.

    Article  Google Scholar 

  • Dhivya R. and Manimegalai K. (2013) Wing shape analysis of the Japanese encephalitis vector Culex gelidus (Diptera: Culicidae) at the foothills of southern Western Ghats, India. World Journal of Zoology 8, 119–125.

    Google Scholar 

  • Dujardin J. P., Le Pont F. and Baylac M. (2003) Geographical versus interspecific differentiation of sand flies (Diptera: Psychodidae): a landmark data analysis. Bulletin of Entomological Research 93, 87–90.

    Article  Google Scholar 

  • Dujardin J. P. (2011) 16 - Modern morphometrics of medically important insects, pp. 473–501. In Genetics and Evolution of Infectious Disease (edited by M. Tibayrenc). Elsevier, London. ISBN 9780123848901, http://dx.doi.org/10.1016/B978-0-12-384890-1.00016-9. (https://doi.org/www.sciencedirect.com/science/ article/pii/B9780123848901000169)

    Chapter  Google Scholar 

  • Francoy T. M., Grassi M. L., Imperatriz-Fonseca V. L., de Jesús May-Itzá W. and Quezada-Euán J. G. (2011) Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidolo-gie 42, 499–507. doi:10.1007/s13592-011-0013-0.

    Article  Google Scholar 

  • Gafur A. and Ajizah A. (2008) The use of female wing measurements for discrimination of Aedes aegypti (L.) (Diptera: Culicidae) populations from South Kalimantan. HAYATI Journal of Biosciences 15, 8–12.

    Article  Google Scholar 

  • Gillies M. T. and Coetzee M. (1987) A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). The South African Institute for Medical Research, Johannesburg. Volume 55, 143 pp. Available at: https://doi.org/mosquitocatalog.org/fles/pdfs/190531.pdf

    Google Scholar 

  • Henry A., Thongsripong P., Fonseca-Gonzalez I., Jaramillo-Ocampo N. and Dujardin J. (2010) Wing shape of dengue vectors from around the world. Infection, Genetics and Evolution 10, 207–214. doi:10.1016/j.meegid.2009.12.001.

    Article  CAS  Google Scholar 

  • Jaramillo O. N., Fonseca-González I. and Chaverra-Rodríguez D. (2014) Geometric morphometrics of nine field isolates of Aedes aegypti with different resistance levels to lambda-cyhalothrin and relative fitness of one artificially selected for resistance. PLoS ONE 9(5), e96379. doi:10.1371/journal.pone.0096379.

    Google Scholar 

  • Lagos State Ministry of Health (2012). Malaria Control Programme. (https://doi.org/www.lagosstateministryofhealth.com/programmes/ malaria-control-program#.V3Ud0JN95Bx). accessed 30 June, 2014.

    Google Scholar 

  • Mondal R., Devi N. P. and Jauhari R. K. (2015) Landmark-based geometric morphometric analysis of wing shape among certain species of Aedes mosquitoes in District Dehradun (Uttarakhand), India. Journal of Vector Borne Diseases 52, 122–128.

    PubMed  Google Scholar 

  • Mooi E. and Sarstedt M. (2011) A Concise Guide to Market Research: The Process, Data and Method Using IBM SPSS Statistics. Springer-Verlag, Berlin. 308 pp.

    Book  Google Scholar 

  • Nasidi A., Monath T., DeCock K., Tomori O., Cordellier R., Olaleye O. D., Harry T. O., Adeniyi J. A., Sorungbe A. O., Ajose-Coker A. O., van Der Laan G. and Oyediran A. B. O. (1989) Urban yellow fever epidemic in western Nigeria, 1987. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 401–406.

    Article  CAS  Google Scholar 

  • O’Malley C. (1995) Seven ways to a successful dipping career. Wing Beats 6(4), 23–24.

    Google Scholar 

  • Paupy C., Chantha N., Huber K., Lecoz N., Reynes J. M., Rodhain F. and Failloux A. B. (2004) Influence of breeding sites features on genetic differentiation of Aedes aegypti populations analyzed on a local scale in Phnom Penh municipality of Cambodia. American Journal of Tropical Medicine and Hygiene 71, 73–81.

    Article  Google Scholar 

  • Rohlf F. J. (1990) Morphometrics. Annual Review of Ecology and Systematics 12, 299–316. doi:10.1146/annurev.es.21.110190.001503.

    Article  Google Scholar 

  • Rueda L. M. (2004) Pictorial Keys for the Identification of Mosquitoes (Diptera: Culicidae) Associated with Dengue Virus Transmission, 1st edn. Magnolia Press, New Zealand. 60 pp.

    Google Scholar 

  • Sendaydiego J. P., Gorospe J. M., Torres M. A. J., Amparado Jr R. F. and Demayo C. G. (2014) Describing wing shape among Culex quinquefasciatus Say (Diptera: Culicidae) detected positive and negative for flaria using relative warp analysis. Journal of Medicine and Bioengineering 3, 50–54.

    Article  Google Scholar 

  • Sendaydiego J. P., Torres M. A. and Demayo C. G. (2013) Describing wing geometry of Aedes aegypti using landmark-based geometric morphometrics. International Journal of Bioscience, Biochemistry and Bioinform-atics 3, 379–383.

    Google Scholar 

  • Severson D. W., Anthony N. M., Andreev O. and ffrench-Constant R. H. (1997) Molecular mapping of insecticide genes in the yellow fever mosquito (Aedes aegypti). Journal of Heredity 88, 520–524.

    Article  CAS  Google Scholar 

  • Sokal R. R. and Rohlf F. J. (1995) Biometry. 3rd edition. W.H. Freeman and Company, New York. 887 pp.

    Google Scholar 

  • Tabachnick W., Munstermann L. and Powell J. (1979) Genetic distinctness of sympatric forms of Aedes aegypti in East Africa. Evolution (N.Y.) 33, 287–295.

    Google Scholar 

  • Vidal P., Carvalho E. and Suesdek L. (2012) Temporal variation of wing geometry in Aedes albopictus. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 107, 1030–1034.

    Article  Google Scholar 

  • Wikipedia (2015) Comstock-Needham System. (https://doi.org/en.wikipedia.org/wiki/Comstock%E2% 80%93Needham_system)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adenola F. Ayorinde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayorinde, A.F., Oboh, B.O. & Otubanjo, O.A. Differentiation of some populations of Aedes aegypti (Diptera: Culicidae) in three areas of Lagos State, Nigeria, using wing morphometry. Int J Trop Insect Sci 36, 171–176 (2016). https://doi.org/10.1017/S1742758416000151

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758416000151

Key words

Navigation