Skip to main content
Log in

Efficacy and Deployment of Transgenic Plants for Stemborer Management

  • Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

Transgenic plants expressing Bacillus thuringiensis δ-endotoxins are now being used commercially in several crop species. These toxins have demonstrated good control of temperate (Ostrinia nubilalis) and tropical (Diatraea grandiosella and D. saccharalis) stemborers in maize. Resistance to B. thuringiensis toxins has been reported in over 11 species in both field and laboratory studies, demonstrating the need for resistance management strategies to prolong the efficacy of this valuable pest management tool within an integrated control programme. Resistance involves reduced binding of toxins to midgut epithelial cells and is generally considered to be a recessive trait. Resistance management will require the use of spatial and temporal refugia which may require unique schemes for each pest complex. Information is presented on the mode of action of cry toxins, resistance mechanisms, interaction of transgenic plants and biocontrol agents, and management/deployment strategies for transgenic maize in tropical ecologies.

Résumé

Les plantes transgéniques qui expriment les δ-endotoxines de Bacillus thuringiensis sont maintenant en train d’être utilisées commercialement dans plusieurs espèces de cultures. Ces toxines se sont révélées de bons agents de lutte contre les foreurs des tiges du maïs des zones tempérées (Ostrinia nubilalis) et des zones tropicales (Diatrea grandiosella et D. saccharalis). Une résistance aux toxines de B. thuringiensis a été rapportée chez plus de 11 espèces à partir des études de terrain et de laboratoire, démontrant le besoin des stratégies de contrôle de la résistance pour prolonger l’efficacité de cet outil de valeur dans le contrôle des ravageurs au sein d’un programme de lutte intégrée. La résistance implique la réduction de l’attachement des toxines sur les cellules épithéliales de l’estomac moyen et elle est généralement considérée comme un caractère récessif. Le contrôle de la résistance va nécessiter l’utilisation des refuges spatiaux et temporaires qui pourraient exiger des schémas uniques pour chaque complexe de ravageurs. Une information est fournie en ce qui concerne le mode d’action des cry toxines, les méchanismes de résistance, l’interaction entre plantes transgéniques et agents de lutte biologique ainsi que des stratégies du contrôle / déploiement pour le maïs transgénique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adkisson P. L. and Dyck V. A. (1980) Resistant varieties in pest management systems, pp. 233–253. In Breeding Plants Resistant to Insects (Edited by F. G. Maxwell and P. R. Jennings). Wiley, New York.

    Google Scholar 

  • Armstrong C. L., Parker G. B., Pershing J. C., Brown S. M., Sanders P. R., Duncan D. R., Stone T., Dean D. A., DeBoer D. L., Hart J., Howe A. R., Morrish F. M., Pajeau M. E., Petersen W. L., Reich B. J., Rodriguez R., Santino C. G., Sato S. J., Schuler W., Sims S. R., Stehling S., Tarochione L. J. and Fromm M. E. (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 35, 550–557.

    Article  Google Scholar 

  • Barbosa P., Saunders J. A., Kemper J., Trumbule R., Olechno J. and Martinat P. (1986) Plant allelochemicals and insect parasitoids: Effects of nicotine on Cotesia congregata (Say) (Hymenoptera: Braconidae) and Hyposoter annulipes (Cresson) (Hymenoptera: Ichneumonidae). J. Chem. Ecol. 12, 1319–1328.

    Article  CAS  Google Scholar 

  • Bennett J. (1994) DNA-based techniques for control of rice insects and diseases: Transformation gene tagging and DNA fingerprinting, pp. 147–172. In Rice Pest Science and Management (Edited by P. S. Teng, K. L. Heong and K. Moody). International Rice Research Institute, Los Baños, Philippines.

    Google Scholar 

  • Bevan M., Flavell R. N. and Chilton M. D. (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304, 184–187.

    Article  CAS  Google Scholar 

  • Charles J. -F., Nielsen-LeRoux C. and Delécluse A. (1996) Bacillus sphaericus toxins: Molecular biology and mode of action. Annu. Rev. Entomol. 41, 451–472.

    Article  CAS  Google Scholar 

  • Choma C. T., Surewicz W. K., Carey P. R., Pozsgay M. and Raynor T. (1990) Unusual proteolysis of the protoxin and toxin from Bacillus thuringiensis: Structural implications. Eur. J. Biochem. 189, 523–527.

    Article  CAS  Google Scholar 

  • Croft B. A. (1990) Arthropod Biological Control Agents and Pesticides. John Wiley and Sons, New York. 723 pp.

    Google Scholar 

  • English L. and Slatin S. L. (1992) Mode of action of δ-endotoxins from Bacillus thuringiensis: A comparison with other bacterial toxins. Insect Biochem. Molec. Biol. 22, 1–7.

    Article  CAS  Google Scholar 

  • Ferré J. S., Real M. D., van Rie J., Jansens S. and Peferoen M. (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA 88, 5119–5123.

    Article  Google Scholar 

  • Gibson D. M., Gallo L. G., Krasnoff S. B. and Ketchum R. E. B. (1995) Increased efficiency of Bacillus thuringiensis subsp. kurstaki in combination with tannic acid. J. Econ. Entomol. 88, 270–277.

    Article  CAS  Google Scholar 

  • Gill S. S., Cowles E. A. and Pietrantonio F. V. (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37, 615–636.

    Article  CAS  Google Scholar 

  • Giroux S., Cot J. C, Vincent C., Martel P. and Coderre D. (1994) Bacteriological insecticide M-one effects on predation efficiency and mortality of adult Coleomegilla maculata lengi (Coleoptera: Coccinellidae). J. Econ. Entomol. 87, 39–43.

    Article  Google Scholar 

  • Gould F. (1986) Simulation models for predicting durability of insect-resistant germplasm: A deterministic diploid, two-locus model. Environ. Entomol. 15, 1–10.

    Article  Google Scholar 

  • Gould F. (1994) Potential and problems with high dose strategies for pesticidal engineered crops. Biocontrol Science & Technol. 4, 451–461.

    Article  Google Scholar 

  • Gould F. and Anderson A. (1991) Effects of Bacillus thuringiensis and HD-73 delta-endotoxin on growth, behavior, and fitness of susceptible and toxin-adapted strains of Heliothis virescens (Lepidoptera: Noctuidae). Environ. Entomol. 20, 30–38.

    Article  Google Scholar 

  • Gould F., Anderson A., Reynolds A., Bumgarner L. and Moar W. (1995) Selection and genetic analysis of Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol. 88, 1545–1559.

    Article  CAS  Google Scholar 

  • Gould F., Martinez-Ramirez A., Anderson A., Ferré J., Silva F. J. and Moar W. (1992) Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc. Natl. Acad. Sci. USA 89, 7986–7990.

    Article  CAS  Google Scholar 

  • Höfte H. and Whiteley H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242–255.

    PubMed  PubMed Central  Google Scholar 

  • Johnson D. E., Brookhart G. L., Kramer K. J., Barnett B. D. and McGaughey W. H. (1990) Resistance to Bacillus thuringiensis by the Indian meal moth Plodia interpunctella: Comparison of midgut proteinases from susceptible and resistant larvae. J. Invertebr. Pathol. 55, 235–243.

    Article  CAS  Google Scholar 

  • Johnson M. T. and Gould R. (1992) Interaction of genetically engineered host plant resistance and natural enemies of Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environ. Entomol. 21, 586–597.

    Article  Google Scholar 

  • Keller M., Sneh B., Strizhov A., Prudovsky N., Regev A., Koncz C., Schell J. and Zilberstein A. (1996) Digestion δ-endotoxin by gut proteases may explain reduced sensitivity of advanced instars of Spodoptera littoralis to CryIC. Insect Biochem. Molec. Biol. 26, 365–373.

    Article  CAS  Google Scholar 

  • Knowles B. H. and Dow J. A. T. (1993) The crystal-endotoxin of Bacillus thuringiensis: Models for their mechanism of action on the insect gut. Bioessays 15, 469.

    Article  CAS  Google Scholar 

  • Koziel M. G., Beland G. L., Bowman C., Carozzi N. B., Crenshaw R., Crossland L., Dawson J., Desai N., Hill M., Kadwell S., Launis K., Lewis K., Maddox D., McPherson K., Meghji M. R., Merlin E., Rhodes R., Warren G. W., Wright M. and Evola S. V. (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11, 194–200.

    CAS  Google Scholar 

  • Lee M. K., Milne R. E., Ge A. Z. and Dean D. H. (1992) Location of Bombyx mori receptor binding on Bacillus thuringiensis delta-endotoxin. J. Biol. Chem. 267, 3115–3121.

    CAS  PubMed  Google Scholar 

  • Li J., Carroll J. and Ellar D. J. (1991) Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 oA resolution. Nature 353, 815–817.

    Article  CAS  Google Scholar 

  • McGaughey W. H. and Whalon M. E. (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258, 1451–1455.

    Article  CAS  Google Scholar 

  • Mihm J. A. (1989) Evaluating maize for resistance to tropical stem borers, armyworm, and earworms, pp. 109–121. In Toward Insect Resistant Maize for the Third World. Proceedings of the International Symposium on Methodologies for Developing Host Plant Resistance to Maize Insects, 9–14 March 1987, CIMMYT, Mexico. CIMMYT, Mexico, Mexico D.F.

    Google Scholar 

  • Perlak F. J., Fuchs R. L., Dean D. A., McPherson S. L. and Fischoff D. A. (1991) Modification of coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 3324–3328.

    Article  CAS  Google Scholar 

  • Raineri D. M., Bottino P., Gordon M. P. and Nester E. W. (1990) Agrobacterium-mediated transformation of rice (Oryza sativa L.). Biotechnology 8, 33–38.

    CAS  Google Scholar 

  • Rossiter M., Yendol W. G. and Dubois N. R. (1990) Resistance to Bacillus thuringiensis in gypsy moth (Lepidoptera: Lymantriidae): Genetic and environmental causes. J. Econ. Entomol. 83, 2211–2218.

    Article  Google Scholar 

  • Salama H. S, and Sharaby A. (1985) Histopathological changes in Heliothis armigera infected with Bacillus thuringiensis as detected by electron microscopy. Insect Sci. Applic. 6, 503–511.

    Google Scholar 

  • Schwartz J. L., Garneau L., Savaria D., Masson L., Brousseau R. and Rousseau E. (1993) Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation and anion-selective channels in planar lipid bilayer. J. Membrane Biol. 132, 53–62.

    Article  CAS  Google Scholar 

  • Serratos J. A., Willcox M. C. and Castillo-Gonzalez F. (s) (1997) Gene Flow Among Maize Landraces, Improved Maize Varieties, and Teosinte: Implications for Transgenic Maize. CIMMYT, Mexico, D.F. 122 pp.

    Google Scholar 

  • Shelton A. M., Robertson J. L., Tang J. D., Perez C., Eigenbrode S. D., Preisler H. K., Wilsey W. T. and Cooley R. J. (1993) Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86, 697–705.

    Article  Google Scholar 

  • Sneh B. and Schuster S. (1981) Recovery of Bacillus thuringiensis and other bacteria from larvae of Spodoptera littoralis Boisd. previously fed on B. thuringiensis-treated leaves. J. Invertebr. Pathol. 37, 295–303.

    Article  Google Scholar 

  • Starks K. J., Muniappan R. and Eikenbary R. D. (1972) Interaction between plant resistance and parasitism against greenbug on barley and sorghum. Ann. Entomol. Soc. Am. 65, 650–655.

    Article  Google Scholar 

  • Tabashnik B. (1994) Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39, 47–79.

    Article  Google Scholar 

  • Tailor R., Tippett J., Gibb G., Pells S., Pike D., Jordan L. and Ely S. (1992) Identification and characterization of a novel Bacillus thuringiensis-endotoxin entomocidal to coleopteran and lepidopteran larvae. Mol. Microbiol. 6, 1211–1217.

    Article  CAS  Google Scholar 

  • USDA (1995) Genetically engineered organisms and products: Simplification of requirements and procedures for genetically engineered organisms. 7 CFR 340. Federal Register 60, 43567–43573.

    Google Scholar 

  • van Rie J., Jansens S., Höfte H., Degheele D. and van Mellaert H. (1989) Specificity of Bacillus thuringiensis 5-endotoxins. Importance of specific receptors on the brush border membrane of the mid-gut of target insects. Eur. J. Biochem. 186, 239–247.

    Article  Google Scholar 

  • van Rie J., McGaughey W. H., Johnson D. E., Barnett B. D. and van Mellaert H. (1990) Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science 247, 72–74.

    Article  Google Scholar 

  • Wu D. and Aronson A. I. (1990) Use of mutagenic oligonucleotides for defining regions of a Bacillus thuringiensis δ-endotoxin involved in toxicity, pp. 273–277. In Proc. 5th Int. Colloquim on Invertebrate Pathology and Microbial Control, Adelaide, Australia, 20–24 August 1990. Soc. Invertebrate Pathology, Adelaide, Australia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergvinson, D., Willcox, M. & Hoisington, D. Efficacy and Deployment of Transgenic Plants for Stemborer Management. Int J Trop Insect Sci 17, 157–167 (1997). https://doi.org/10.1017/S1742758400022281

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S1742758400022281

Key Words

Mots Clés

Navigation