The Relationship Between Larval Critical Weight, Latent Feeding Period and Diet Quality in the Larval Metamorphosis of Cnephasia Jactatana (Walker) (Lepidoptera: Tortricidae)

  • J. P. R. Ochieng-Odero
Research Article


The lowest weight at which a final instar larva of the leafroller, Cnephasia jactatana (Walker) (Lepidoptera: Tortricidae) can initiate pupation, the larval critical weight, was unaffected by diet quality. Use of a non-nutritive artificial diet showed that the larval-pupal metamorphosis was possibly triggered by stretch receptors, and was not related to nutrition per se. However, a final- instar larva was not able to moult until it had ingested and assimilated the quantity of food required to attain the larval critical weight. The period between attaining the larval critical weight and the larval maximum weight is the latent feeding period which was found to be longer on higher-quality diets. The decrease from larval maximum weight to pupal weight depended on diet quality: optimum-quality diets gave the smallest decreases. The decrease from pupal to adult weight was not affected by diet. Reproductive performance was strongly affected by the quality of the diet during the latent feeding period.

Key Words

Artificia diet Cnephasia jactatana evaluation larval critical weight latent feeding period larval maximum weight metamorphosis nutrition performance quality 


Le poids minimal auquel le dernier stade de la larve de Cnephasia jactatana (Walker) (Lepidoptera: Tortricidae) initie la pupation, le poids critique de la larve, n’a pas ete influence par la qualite de l’alimentation. L’utilisation d’un regime alimentaire artificiel non nutritif a montre que la metamorphose larve-pupe serait declanchee par l’expansion des recepteurs et ne serait pas donc pas liee a l’alimentation en tant que telle. Toutefois, le dernier stade larvaire n’a pu se metamorphoser qu’apres avoir ingere la quantite d’aliments necessaire pour atteindre le poids critique de la larve. La periode entre le poids critique et le poids maximal de la larve est dite periode latente de nutrition; celle-ci a ete plus longue lorsque la larve a ete soumise a des reqimes alimentaires de grande valeur nutritive. La baisse du poids maximal de la larve par rapport au poids de la pupe depend de la qualite du regime alimentaire. Les baisses en poids les plus legeres ont ete obtenues avec des milieux nutritifs de qualite optimale. La baisse en poids de la pupe par rapport a celle de l’adulte n’a pas ete influencee par la qualite de l’alimentation par contre la reproduction a ete serieusement affectee par la qualite de la nourriture pendant la periode latente de nutrition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anwyl R. (1972) The structure and properties of an abdominal stretch receptor in Rhodniusprolixus. J. Insect Physiol. 18, 2143–2153.CrossRefGoogle Scholar
  2. Beckel E. and Friend W. G. (1964) The relation of abdominal distension and nutrition to moulting in Rhodniusprolixus (Stahl) (Hemiptera). Can.J. Zool. 42, 71–81.CrossRefGoogle Scholar
  3. Bhaskaran G., Jones G. and Jones D. (1980) Neuroendocrine regulation of corpus allatum activity in Manduva sexta: Sequential neurohormonal and nervous inhibition in the last - instar larva. Proc. Nat. Acad. Sci. 77, 4407–4411.CrossRefGoogle Scholar
  4. Ciemior K. E., Sehnal F., and Schneiderman H. A. (1979) Moulting, growth and survival of Galleria mellonella L. (Lep., Pyralidae) treated with juveniods. J. Appl. Entomol. 88, 414–425.Google Scholar
  5. Dadd R. H. (1985) Nutrition: organisms. In Comprehensive Insect Biochemistry and Pharmacology Regulation: Digestion, Nutrition, Excretion Vol. IV, (Edited by Kerkut G. A. and Gilbert L. I.), Pergamon Press, Oxford, pp. 313–390.CrossRefGoogle Scholar
  6. Hagen K. S., Dadd R. H. and Reese J. (1984) The food of insects. In Ecological Entomology (Edited by Huffaker C.B. and Rabb R. L. John Wiley and Sons), New York. pp. 79–112.Google Scholar
  7. Keely L. L. (1972) Neuroendocrine regulation of insect metabolism and the influence of nutrition. [nInsect andMite Nutrition (Edited by Rodriguez J. G.), Elsevier, Amsterdam, pp. 541–554.Google Scholar
  8. Kester K. M. and Smith M. (1984) Effects of diet on the growth, fecundity and duration of tethered flight of Nezara viridula. Entomol. exp. Appl. 35, 75–81.CrossRefGoogle Scholar
  9. Nijhout H. F. (1979) Stretch-induced moulting in Oncopeltus fasciatus. J. Insect Physiol. 25, 277–281.CrossRefGoogle Scholar
  10. Nijhout H. F. (1981) Physiological control of moulting in insects. Am. Zool. 21, 631–640.CrossRefGoogle Scholar
  11. Ochieng’-Odero J. P. R. (1980) Critical, pupal and adult weights in the size related metamorphosis of the black Lyre leafroller Cnephasia jactatana. Entomol. exp. Appl. 54, 21–27.CrossRefGoogle Scholar
  12. Reinecke J. P. (1985) Nutrition: artificial diets. In Comprehensive Insect Biochemistry and Pharmacology, Regulation: Digestion, Nutrition, Excretion, Vol. IV (Edited by Kerkut G. A. and Gilbert L. I.), Pergamon Press, Oxford, pp. 391–419.CrossRefGoogle Scholar
  13. Ryan B. F., Joiner B. L. and Ryan T. A. Jr. (1985) Minitah Handhk. Boston, Duxbury Press.Google Scholar
  14. Sehnal F. (1976) Action of juvenoids on different groups of insects. In The Juvenile Hormones (Edited by Gilbert L. I.), Plenum Press, New York. pp. 301–322.CrossRefGoogle Scholar
  15. Singh P. (1983) A general purpose laboratory diet mixture for rearing insects. Insect Sci. Applic. 4, 357–362.Google Scholar
  16. Slanky F. Jr. and Scriber J. M. (1985). In Comprehensive Insect Biochemistry and Pharmacology Regulation: Digestion, Nutrition, Excretion, Vol. IV (Edited by Kerkut G. A. and Gilbert L. I.), Pergamon Press, Oxford, pp. 271–282.Google Scholar
  17. Slama K. (1975) Some old concepts and new findings on hormonal control of insect morphogenesis J. Insect Physio. 21, 921–955.CrossRefGoogle Scholar
  18. Thomas W. P. (1986) An artificial diet for rearing the lightbrown apple moth Epiphyas postivittana (Walk) (Lepidoptera: Tortricidae). New Zealand J. Entomol. 4, 31–32.CrossRefGoogle Scholar
  19. Vanderzant E. S. (1974) Development, significance, and application of artificial diets for insects. Ann. Rev. Entomol. 19, 139–160.CrossRefGoogle Scholar
  20. Wigglesworth V. B. (1934) The physiology of ecdysis in Rhodnis prolixus (Hemiptera). II. Factors controlling moulting and “metamorphosis”. Q.J. Microsc. Sci. 77, 191–222.Google Scholar
  21. Ziegler R. (1985) Metabolic energy expenditure and its hormonal regulation. In Environmental Physiology and Biochemistry of Insects (Edited by Hoffmann K. H.), Springer-Verlag, Berlin. pp. 95–118.Google Scholar

Copyright information

© ICIPE 1993

Authors and Affiliations

  • J. P. R. Ochieng-Odero
    • 1
  1. 1.Zoology DepartmentUniversity of AucklandAucklandNew Zealand

Personalised recommendations