Skip to main content

Advertisement

Log in

Food restriction alters energy allocation strategy during growth in tobacco hornworms (Manduca sexta larvae)

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Growing animals must alter their energy budget in the face of environmental changes and prioritize the energy allocation to metabolism for life-sustaining requirements and energy deposition in new biomass growth. We hypothesize that when food availability is low, larvae of holometabolic insects with a short development stage (relative to the low food availability period) prioritize biomass growth at the expense of metabolism. Driven by this hypothesis, we develop a simple theoretical model, based on conservation of energy and allometric scaling laws, for understanding the dynamic energy budget of growing larvae under food restriction. We test the hypothesis by manipulative experiments on fifth instar hornworms at three temperatures. At each temperature, food restriction increases the scaling power of growth rate but decreases that of metabolic rate, as predicted by the hypothesis. During the fifth instar, the energy budgets of larvae change dynamically. The free-feeding larvae slightly decrease the energy allocated to growth as body mass increases and increase the energy allocated to life sustaining. The opposite trends were observed in food restricted larvae, indicating the predicted prioritization in the energy budget under food restriction. We compare the energy budgets of a few endothermic and ectothermic species and discuss how different life histories lead to the differences in the energy budgets under food restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Benyi K, Habi H (1998) Effects of food restriction during the finishing period on the performance of broiler chickens. Br Poult Sci 39:423–425

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA, Woods HA (2000) Foraging in nature by larvae of < i > Manduca sexta</i > —influenced by an endogenous oscillation. J Insect Physiol 46:825–836

    Article  CAS  PubMed  Google Scholar 

  • Brody S (1945) Bioenergetics and growth. Reinhold, New York

    Google Scholar 

  • Campero M, De Block M, Ollevier F, Stoks R (2008) Metamorphosis offsets the link between larval stress, adult asymmetry and individual quality. Funct Ecol 22:271–277

    Article  Google Scholar 

  • D’Amico LJ, Davidowitz G, Nijhout HF (2001) The developmental and physiological basis of body size evolution in an insect. Proc R Soc Lond B Biol Sci 268:1589–1593. doi:10.1098/rspb.2001.1698

    Article  Google Scholar 

  • Davidowitz G, D’Amico LJ, Nijhout HF (2003) Critical weight in the development of insect body size. Evol Dev 5:188–197. doi:10.1046/j.1525-142X.2003.03026.x

    Article  PubMed  Google Scholar 

  • De Block M, Stoks R (2008) Short-term larval food stress and associated compensatory growth reduce adult immune function in a damselfly. Ecol Entomol 33:796–801. doi:10.1111/j.1365-2311.2008.01024.x

    Article  Google Scholar 

  • Dmitriew CM (2011) The evolution of growth trajectories: what limits growth rate? Biol Rev 86:97–116. doi:10.1111/j.1469-185X.2010.00136.x

    Article  PubMed  Google Scholar 

  • Esperk T, Tammaru T (2004) Does the ‘investment principle’model explain moulting strategies in lepidopteran larvae? Physiol Entomol 29:56–66

    Article  Google Scholar 

  • Glazier DS (2002) Resource-allocation rules and the heritability of traits. Evolution 56:1696–1700. doi:10.1111/j.0014-3820.2002.tb01481.x

    Article  PubMed  Google Scholar 

  • Glazier DS (2005) Beyond the “3/4 power law”: variation in the intra- and interspecific scaling of metabolic rate in animals. Biol Rev 80:611. doi:10.1017/s1464793105006834

    Article  PubMed  Google Scholar 

  • Glazier DS, Calow P (1992) Energy allocation rules in Daphnia magna: clonal and age differences in the effects of food limitation. Oecologia 90:540–549

    Article  Google Scholar 

  • Greenlee KJ, Harrison JF (2005) Respiratory changes throughout ontogeny in the tobacco hornworm caterpillar. Manduca sexta J Exp Biol 208:1385–1392. doi:10.1242/jeb.01521

    Article  PubMed  Google Scholar 

  • Grodzinski W, Klekowski RZ, Duncan A (1975) Methods for ecological bioenergetics. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Hahn DA, Denlinger DL (2011) Energetics of insect diapause. Annu Rev Entomol 56:103–121. doi:10.1146/annurev-ento-112408-085436

    Article  CAS  PubMed  Google Scholar 

  • Hayes SE, McClintock JB, Watson CJ, Douglas Watson R (1992) Growth, energetics and food conversion efficiency during the last larval stadium of the tobacco hornworm (Manduca sexta). Comp Biochem Physiol A Physiol 102:395–399. doi:10.1016/0300-9629(92)90153-h

    Article  Google Scholar 

  • Hayes M, Jiao L, Tsao T-h, King I, Jennings M, Hou C (2014) High temperature slows down growth in tobacco hornworms (Manduca sexta larvae) under food restriction Insect Sci In press doi:10.1111/1744-7917.12109

  • Honěk A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship Oikos:483–492

  • Hou C (2013) The energy trade-off between growth and longevity. Mech Ageing Dev 134:373–380. doi:10.1016/j.mad.2013.07.001

    Article  PubMed  Google Scholar 

  • Hou C (2014) Increasing energetic cost of biosynthesis during growth makes refeeding deleterious. Am Nat 184:233–247. doi:10.1086/676856

    Article  PubMed  Google Scholar 

  • Hou C, Zuo WY, Moses ME, Woodruff WH, Brown JH, West GB (2008) Energy uptake and allocation during ontogeny. Science 322:736–739. doi:10.1126/science.1162302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hou C, Bolt KM, Bergman A (2011a) Energetic basis of correlation between catch-up growth. health maintenance, and aging. J Gerontol A Biol Sci Med Sci 66A:627–638. doi:10.1093/gerona/glr027

    Article  PubMed Central  Google Scholar 

  • Hou C, Bolt KM, Bergman A (2011b) A general model for ontogenetic growth under food restriction. Proc R Soc B Biol Sci 278:2881–2890. doi:10.1098/rspb.2011.0047

    Article  Google Scholar 

  • Jokela J (1997) Optimal energy allocation tactics and indeterminate growth: life-history evolution of long-lived bivalves. In: Evolutionary Ecology of Freshwater Animals. Springer, pp 179–196

  • Kearney MR, White CR (2012) Testing metabolic theories. Am Nat 180:546

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Woods HA (1997) Thermal sensitivity of growth and feeding in Manduca sexta caterpillars. Physiol Biochem Zool 70:631–638

    CAS  Google Scholar 

  • Kitaysky AS (1999) Metabolic and developmental responses of alcid chicks to experimental variation in food intake. Physiol Biochem Zool 72:462–473

    Article  CAS  PubMed  Google Scholar 

  • Konarzewski M, Starck JM (2000) Effects of food shortage and oversupply on energy utilization, histology, and function of the gut in nestling song thrushes (Turdus philomelos). Physiol Biochem Zool 73:416–427

    Article  CAS  PubMed  Google Scholar 

  • Kooijman S (2010) Dynamic energy budget theory. Cambridge University Press, Cambridge

    Google Scholar 

  • Lighton JRB (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, USA

    Book  Google Scholar 

  • Maltby L (1994) Stress, shredders and streams: using Gammarus energetics to assess water quality

  • Mangel M, Munch SB (2005) A life-history perspective on short- and long-term consequences of compensatory growth. Am Nat 166:E155–E176. doi:10.1086/444439

    Article  PubMed  Google Scholar 

  • Mangel M, Stamps J (2001) Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evol Ecol Res 3:583–593

    Google Scholar 

  • McCarter RJ, Palmer J (1992) Energy-metabolism and aging—a lifelong study of Fischer-344 rats. Am J Physiol-Endocrinol Metab 263:E448–E452

    CAS  Google Scholar 

  • Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16:254–260

    Article  PubMed  Google Scholar 

  • Morgan IJ, Metcalfe NB (2001) Deferred costs of compensatory growth after autumnal food shortage in juvenile salmon. Proc R Soc Lond B Biol Sci 268:295–301. doi:10.1098/rspb.2000.1365

    Article  CAS  Google Scholar 

  • Naim M, Brand JG, Kare MR, Kaufmann NA, Kratz CM (1980) Effects of unpalatable diets and food restriction on feed efficiency in growing rats. Physiol Behav 25:609–614. doi:10.1016/0031-9384(80)90360-1

    Article  CAS  PubMed  Google Scholar 

  • Nijhout HF (1975) A threshold size for metamorphosis in the tobacco hornworm. Manduca sexta (L) Biol Bull 149:214–225

    Article  CAS  PubMed  Google Scholar 

  • Nijhout H, Davidowitz G, Roff D (2006) A quantitative analysis of the mechanism that controls body size in Manduca sexta. J Biol 5:16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ocak N, Erener G (2005) The effects of restricted feeding and feed form on growth, carcass characteristics and days to first egg of Japanese quail (Coturnix coturnix japonica). Asian Austral J Anim Sci 18:1479

    Article  Google Scholar 

  • Pietrzak B, Grzesiuk M, Bednarska A (2010) Food quantity shapes life history and survival strategies in Daphnia magna (Cladocera). Hydrobiologia 643:51–54

    Article  Google Scholar 

  • Reynolds SE, Nottingham SF (1985) Effects of temperature on growth and efficiency of food utilization in fifth-instar caterpillars of the tobacco hornworm, Manduca sexta. J Insect Physiol 31:129–134. doi:10.1016/0022-1910(85)90017-4

    Article  Google Scholar 

  • Roff DA (2001) Life history evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Rønning B, Mortensen AS, Moe B, Chastel O, Arukwe A, Bech C (2009) Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway. J Exp Biol 212:3060–3067. doi:10.1242/jeb.029835

    Article  PubMed  Google Scholar 

  • Sears KE, Kerkhoff AJ, Messerman A, Itagaki H (2012) Ontogenetic Scaling of metabolism, growth, and assimilation: testing metabolic scaling theory with manduca sexta larvae. Physiol Biochem Zool 85:159–173

    Article  PubMed  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  • Steinberg CE, Ouerghemmi N, Herrmann S, Bouchnak R, Timofeyev MA, Menzel R (2010) Stress by poor food quality and exposure to humic substances: Daphnia magna responds with oxidative stress, lifespan extension, but reduced offspring numbers. Hydrobiologia 652:223–236

    Article  CAS  Google Scholar 

  • Timmins WA, Bellward K, Stamp AJ, Reynolds SE (1988) Food intake, conversion efficiency, and feeding behaviour of tobacco hornworm caterpillars given artificial diet of varying nutrient and water content. Physiol Entomol 13:303–314. doi:10.1111/j.1365-3032.1988.tb00482.x

    Article  Google Scholar 

  • West GB, Brown JH (2005) The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208:1575–1592. doi:10.1242/jeb.01589

    Article  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  • Withers PC (1992) Comparative animal physiology. Saunders College Pub, Fort Worth

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the careful reviews and suggestions of three anonymous reviewers. We would like to thank Dr. Rex Gerald for his help with measuring combustion energy content of larval tissue and feces, Dr. Toomas Tammaru and Dr. Douglas Glazier for their excellent suggestions that helped to develop the hypothesis, and Dr. Wenyun Zuo for her enlightening discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Hou.

Additional information

Communicated by: Sven Thatje

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, L., Amunugama, K., Hayes, M.B. et al. Food restriction alters energy allocation strategy during growth in tobacco hornworms (Manduca sexta larvae). Sci Nat 102, 40 (2015). https://doi.org/10.1007/s00114-015-1289-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-015-1289-0

Keywords

Navigation