Skip to main content
Log in

Structural metals at extremes

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Designing structural materials for tailored response at extreme conditions is a grand challenge in materials research. Such materials can be made using either “top-down” or “bottom-up” processes to create nanostructured metals and composites that contain atomically designed interfaces that not only block dislocation slip but also attract, absorb, and annihilate point and line defects. Such multifunctional material systems are not just high in strength but also tolerant of damage at extremes of irradiation, temperature, and mechanical stresses, and hence have applications as structural materials in nuclear power and other energy, transportation, and defense technologies. The exploration of these exceptional properties at extremes requires novel and unconventional methodologies, such as in situ experiments with high spatial and temporal resolution, complemented by simulation across multiple length and time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U.S. Department of Energy, Basic Research Needs for Materials under Extreme Environments (BES Workshop on Basic Research Needs for Materials under Extreme Environments Report, 11–13 June 2007); www.sc.doe.gov/bes/reports/abstracts.html#MUEE.

  2. J.D. Madden, Science 318, 1094 (2007).

    Google Scholar 

  3. O. Bouaziz, Y. Bréchet, J.D. Embury, Adv. Eng. Mater. 1–2, 10 (2008).

    Article  CAS  Google Scholar 

  4. U.S. Department of Energy, Directing Matter and Energy: Five Challenges for Science and the Imagination (BESAC Grand Challenges report, 25 January 2005); www.sc.doe.gov/bes/reports/abstracts.html#GC.

  5. O. Bouaziz, J.D. Embury, Mater. Sci. Forum 42, 539 (2007).

    Article  CAS  Google Scholar 

  6. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  CAS  Google Scholar 

  7. J.R. Weertman, MRS Bull. 29, 616 (2004).

    Article  CAS  Google Scholar 

  8. H. Van Swygenhoven, J.R. Weertman, Mater. Today 9, 24 (2006).

    Article  Google Scholar 

  9. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  10. U.F. Kocks, H. Mecking, Prog. Mater. Sci. 48,171 (2003).

    Article  CAS  Google Scholar 

  11. J.A. Wert, X. Huang, G. Winther, W. Pantleon, H.F. Poulsen, Mater. Today 10-9, 24 (2007).

    Google Scholar 

  12. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, YT. Zhu, JOM 58, 33(2006).

    Google Scholar 

  13. J.D. Verhoeven, Metallography 20, 145 (1987).

    Article  CAS  Google Scholar 

  14. W. Kochmann, M. Reibold, R. Goldberg, W. Hauffe, A.A. Levin, D.C. Meyer, T. Stephan, H. Müller, A. Belger, P. Paufler, J. Alloys Comp. 372, L15 (2004).

    Article  CAS  Google Scholar 

  15. E. Arzt, Acta Mater. 46, 5611 (1998).

    Article  CAS  Google Scholar 

  16. H. Gleiter, Acta Mater. 48, 1 (2000).

    Article  CAS  Google Scholar 

  17. K.S. Kumar, H. Van Swygenhoven, S. Suresh, Acta Mater. 51, 5743 (2003).

    Article  CAS  Google Scholar 

  18. L. Thilly, F. Lecouturier, J. Von Stebut, Acta Mater. 50, 5049 (2002).

    Article  CAS  Google Scholar 

  19. J. Gil Sevillano, J. Phys. III 1, 967 (1991).

    Google Scholar 

  20. J.D. Embury, J.P. Hirth, Acta Mater. 42 (6), 2051 (1994).

    Article  Google Scholar 

  21. A. Misra, J.P. Hirth, R.G. Hoagland, Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  22. L. Thilly, O. Ludwig, M. Véron, F. Lecouturier, J.P. Peyrade, S. Askénazy, Philos. Mag. A 82 (5), 925 (2002).

    Article  CAS  Google Scholar 

  23. S.S. Brenner, J. Appl. Phys. 27 (12), 1484 (1956).

    Article  CAS  Google Scholar 

  24. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter, Scripta Mater. 23, 1679 (1989).

    Article  CAS  Google Scholar 

  25. G. Saada, Mater. Sci. Eng. A 400–401, 146 (2005).

    Google Scholar 

  26. G. Saada, Philos. Mag. 85, 3003 (2005).

    Article  CAS  Google Scholar 

  27. S. Brandstetter, H. Van Swygenhoven, S. Van Petegem, B. Schmitt, R. Maaß, P.M. Derlet, Advanced Mater. 18, 1545 (2006).

    Article  CAS  Google Scholar 

  28. G. Saada, M. Verdier, G.F. Dirras, Philos. Mag. 87, 4875 (2007).

    Article  CAS  Google Scholar 

  29. H. Li, H. Choo, Y. Ren, T.A. Saleh, U. Lienert, P.K. Liaw, F. Ebrahimi, Phys. Rev. Lett. 101, 015502 (2008).

    Article  CAS  Google Scholar 

  30. L. Thilly, S. Van Petegem, P.O. Renault, F. Lecouturier, V. Vidal, B. Schmitt, H. Van Swygenhoven, Acta Mater. 57, 3157 (2009).

    Article  CAS  Google Scholar 

  31. J. Rajagopalan, C. Rentenberger, H.P. Karnthale, G. Dehm, M.T.A. Saif, Acta Mater. 58, 4772 (2010).

    Article  CAS  Google Scholar 

  32. C.C. Aydiner, D.W. Brown, N.A. Mara, J. Almer, A. Misra, Appl. Phys. Lett. 94, 031906 (2009).

    Article  CAS  Google Scholar 

  33. S. Askénazy, Phys. B 211, 56 (1995).

    Article  Google Scholar 

  34. K. Spencer, F. Lecouturier, L. Thilly, J.D. Embury, Adv. Eng. Mater. 6, 290 (2004).

    Article  CAS  Google Scholar 

  35. L. Thilly, F. Lecouturier, Nanomaterials and Nanochemistry: High Field Coils, (Springer, New York, 2007), p. 685.

    Google Scholar 

  36. J. Freudenberger, J. Lyubimova, A. Gaganov, H. Witte, A.L. Hickman, H. Jones, M. Nganb, Mater. Sci. Eng. A 527, 2004 (2010).

    Article  CAS  Google Scholar 

  37. L. Thilly, V. Vidal, S. Van Petegem, U. Stuhr, F. Lecouturier, P.O. Renault, H. Van Swygenhoven, Appl. Phys. Lett. 88, 191906 (2006).

    Article  CAS  Google Scholar 

  38. W.D. Nix, Math. Mech. Solids 14, 207 (2009).

    Article  Google Scholar 

  39. S.M. Han, M.A. Phillips, W.D. Nix, Acta Mater. 57, 4473 (2009).

    Article  CAS  Google Scholar 

  40. J. Wang, R.G. Hoagland, A. Misra, Scripta Mater. 60, 1067 (2009).

    Article  CAS  Google Scholar 

  41. I.N. Mastorakos, H.M. Zbib, D.F. Bahr, Appl. Phys. Lett. 94, 173114 (2009).

    Article  CAS  Google Scholar 

  42. P.M. Anderson, J.S. Carpenter, Scripta Mater. 62, 325 (2010).

    Article  CAS  Google Scholar 

  43. Y.P. Li, G.P. Zhang, Acta Mater. 58, 3877 (2010).

    Article  CAS  Google Scholar 

  44. A.C. Lewis, C. Eberl, K.J. Hemker, T.P. Weihs, J. Mater. Res. 23, 376 (2008)

    Article  CAS  Google Scholar 

  45. B.M. Clemens, H. Kung, S.A. Barnett, MRS Bull. 24, 20 (1999).

    Article  CAS  Google Scholar 

  46. R.C. Cammarata, Scripta Mater. 50, 751 (2004).

    Article  CAS  Google Scholar 

  47. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607 (2009).

    Article  CAS  Google Scholar 

  48. T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Proc. Nat. Acad. Sci. U.S.A. 104, 3031 (2007).

    Article  CAS  Google Scholar 

  49. O. Anderoglu, A. Misra, J. Wang, R.G. Hoagland, J.P. Hirth, X. Zhang, Int. J. Plast 26, 875 (2010).

    Article  CAS  Google Scholar 

  50. F. Sansoz, H. Huang, D.H. Warner, JOM 60, 79 (2008).

    Article  CAS  Google Scholar 

  51. C.J. Shute, B.D. Myers, S. Xie, T.W. Barbee Jr, A.M. Hodge, J.R. Weertman, Scripta Mater. 60, 1073 (2009).

    Article  CAS  Google Scholar 

  52. A. Misra, R.G. Hoagland, H. Kung, Philos. Mag. 84, 1021 (2004).

    Article  CAS  Google Scholar 

  53. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, A. Misra, Appl. Phys. Lett, 92, 231901 (2008).

    Article  CAS  Google Scholar 

  54. D.L. Porter, F.A. Garner, J. Nucl. Mater. 159, 114 (1988).

    Article  CAS  Google Scholar 

  55. R.J. Kurtz, F. Gao, H.L. Heinisch, B.D. Wirth, G.R. Odette, T. Yamamoto, JOM 56, 263 (2004).

    Google Scholar 

  56. A. Misra, M.J. Demkowicz, X. Zhang, R.G. Hoagland, JOM 59, 62 (2007)

    Article  CAS  Google Scholar 

  57. X. Zhang, N. Li, O. Anderoglu, H. Wang, J.G. Swadener, T. Hochbauer, A. Misra, R.G. Hoagland, Nucl. Instrum. Methods Phys. Res., Sect. B 261 (1–2) 1129 (2007).

    Article  CAS  Google Scholar 

  58. T. Hochbauer, A. Misra, K. Hattar, R.G. Hoagland, J. Appl. Phys. 98, 123516 (2005).

    Article  CAS  Google Scholar 

  59. K. Hattar, M.J. Demkowicz, A. Misra, I.M. Robertson, R.G. Hoagland, Scripta Mater. 58, 541 (2008).

    Article  CAS  Google Scholar 

  60. B.N. Singh, Philos. Mag. 28, 1409 (1973).

    Article  CAS  Google Scholar 

  61. N. Nita, R. Schaeublin, M. Victoria, R.Z. Valiev, Philos. Mag. 85, 723 (2005).

    Article  CAS  Google Scholar 

  62. M. Rose, A.G. Balogh, H. Hahn, Nucl. Instrum. Methods Phys. Res., Sect. B 127/128, 119 (1997).

    Article  Google Scholar 

  63. M. Samaras, P.M. Derlet, H. van Swygenhoven, M. Victoria, Phys. Rev. Lett. 88, 125505 (2002).

    Article  CAS  Google Scholar 

  64. H.L. Hienisch, F. Gao, R.J. Kurtz, J. Nucl. Mater. 329–333, 924 (2004).

    Google Scholar 

  65. X.M. Bai, A.F Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327, 1631 (2010).

    Article  CAS  Google Scholar 

  66. A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, H. Kung, Acta Mater. 52, 2387 (2004).

    Article  CAS  Google Scholar 

  67. F Cao, I.J. Beyerlein, F.L. Addessio, B.H. Sencer, C.P Trujillo, E.K. Cerreta, G.T. Gray III, Acta Mater. 58, 549 (2010).

    Article  CAS  Google Scholar 

  68. G.R. Odette, D.T. Hoelzer, JOM, September, 84 (2010).

  69. G.R. Odette, M.J. Alinger, B.D. Wirth, Annual Review of Materials Research, 38, 471 (2008).

    Article  CAS  Google Scholar 

  70. G.S. Was, S.J. Zinkle, Y. Guérin, MRS Bull. 34 (1), 10 (2009).

    Google Scholar 

  71. H. Huang, H. Van Swygenhoven, MRS Bull. 34 (3), 160 (2009).

    Article  CAS  Google Scholar 

  72. I.M. Robertson, P.J. Ferreira, G. Dehm, R. Hull, E.A. Stach, MRS Bull. 33 (2), 122 (2008).

    Article  Google Scholar 

  73. M. Legros, D.S. Gianola, C. Motz, MRS Bull. 35 (5), 354 (2010).

    Article  CAS  Google Scholar 

  74. D.H. Kalantar, G.W. Collins, J.D. Colvin, J.H. Eggert, J. Hawreliak, H.E. Lorenzana, M.A. Meyers, R.W. Minich, K. Rosolankova, M.S. Schneider, J.S. Stölken, J.S. Wark, Int. J. Impact Eng. 33, 343 (2006).

    Article  Google Scholar 

  75. SLAC National Accelerator Laboratory, https://slacportal.slac.stanford.edu/sites/lcls_public/instruments/mec/Pages/default.aspx.

  76. P.G. Evans, S.J.L. Billinge, MRS Bull. 35 (6), 495 (2010).

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Thilly, L. Structural metals at extremes. MRS Bulletin 35, 965–976 (2010). https://doi.org/10.1017/S0883769400100016

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1017/S0883769400100016

Navigation