Skip to main content

Advertisement

Log in

Nephroprotective effects of nebivolol in 2K1C rats through regulation of the kidney ROS-ADMA-NO pathway

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

To evaluate the protective effect of nebivolol against kidney damage and elucidate the underlying mechanism in a two-kidney, one-clip (2K1C) rat model.

Methods

2K1C rats were obtained by clipping left renal artery of male Wistar rats and were considered hypertensive when systolic blood pressure (SBP) was ≥160 mmHg 4 weeks after surgery. The 2K1C hypertensive rats were divided into untreated, nebivolol (10 mg/kg, ig), and atenolol (80 mg/kg, ig) treatment groups. The treatments lasted for 8 weeks. SBP, kidney structure and function, plasma and kidney angiotensin (Ang) II, nitric oxide (NO), asymmetric dimethylarginine (ADMA), and the oxidant status were examined. Kidney protein expression of NADPH oxidase (Nox) isoforms and its subunit p22phox, nitric oxide synthase (NOS) isoforms, protein arginine N-methyltransferase (PRMT) 1, and dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2 was tested by western blotting.

Results

Nebivolol and atenolol exerted similar hypotensive effects. However, atenolol had little effect while nebivolol significantly ameliorated the functional decline and structural damage in the kidney, especially in non-clipped kidney (NCK), which was associated with the reduction of Ang II in NCK. Moreover, nebivolol inhibited the NCK production of reactive oxygen species (ROS) by decreasing Nox2, Nox4, and p22phox expression. Further, nebivolol reduced the plasma and kidney ADMA levels by increasing DDAH2 expression and decreasing PRMT1 expression. Nebivolol also increased the NCK NO level by ameliorating the expression of kidney NOS isoforms.

Conclusions

Our results demonstrated that long-term treatment with nebivolol had renoprotective effect in 2K1C rats partly via regulation of kidney ROS-ADMA-NO pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Suraih Mohammed, Grande Joseph Peter. Management of renal artery stenosis: what does the experimental evidence tell us? World J Cardiol 2014;26:855–60.

    Google Scholar 

  2. Santos Jr AH, Casey MJ, Bucci CM, Rehman S, Segal MS. Nebivolol effects on nitric oxide levels, blood pressure, and renal function in kidney transplant patients. J Clin Hypertens (Greenwich) 2016;18:741–9.

    Article  CAS  Google Scholar 

  3. Akgüllü Ç, Hekim T, Eryılmaz U, Boyacıoğlu M, Güngör H, Meteoğlu İ, et al. The usefulness of carvedilol and nebivolol in preventing contrast nephropathy in rats. Ren Fai 2015;37:511–7.

    Article  CAS  Google Scholar 

  4. Moningka NC, Tsarova T, Sasser JM, Baylis C. Protective actions of nebivolol on chronic nitric oxide synthase inhibition-induced hypertension and chronic kidney disease in the rat: a comparison with angiotensin II receptor blockade. Nephrol Dial Transplant 2012;27:913–20.

    Article  CAS  PubMed  Google Scholar 

  5. Varagic J, Ahmad S, Brosnihan KB, Habibi J, Tilmon RD, Sowers JR, et al. Salt-induced renal injury in spontaneously hypertensive rats: effects of nebivolol. Am J Nephrol 2010;32:557–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hayden MR, Habibi J, Whaley-Connell A, Sowers D, Johnson M, Tilmon R, et al. Nebivolol attenuates maladaptive proximal tubule remodeling in transgenic rats. Am J Nephrol 2010;31:262–72.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Morsy MA, Heeba GH. Nebivolol ameliorates cisplatin-induced nephrotoxicity in rats. Basic Clin Pharmacol Toxicol 2016;118:449–55.

    Article  CAS  PubMed  Google Scholar 

  8. Rizzi E, Guimaraes DA, Ceron CS, Prado CM, Pinheiro LC, Martins-Oliveira A, et al. β1-Adrenergic blockers exert antioxidant effects, reduce matrix metalloproteinase activity, and improve renovascular hypertension-induced cardiac hypertrophy. Free Radic Biol Med 2014;73:308–17.

    Article  CAS  PubMed  Google Scholar 

  9. Ceron CS, Rizzi E, Guimarães DA, Martins-Oliveira A, Gerlach RF, Tanus-Santos JE. Nebivolol attenuates prooxidant and profibrotic mechanisms involving TGF-β and MMPs, and decreases vascular remodeling in renovascular hypertension. Free Radic Biol Med 2013;65:47–56.

    Article  CAS  PubMed  Google Scholar 

  10. Duranay M, Kanbay M, Akay H, Unverdi S, Sürer H, Altay M, et al. Nebivolol improves renal function in patients who underwent angioplasty due to renal artery stenosis: a pilot study. Nephron Clin Pract 2010;114:c213–7.

    Article  PubMed  Google Scholar 

  11. Skogstrand T, Leh S, Paliege A, Reed RK, Vikse BE, Bachmann S, et al. Arterial damage precedes the development of interstitial damage in the nonclipped kidney of two-kidney, one-clip hypertensive rats. J Hypertens 2013;31:152–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wickman A, Andersson IJ, Jia J, Reed RK, Vikse BE, Bachmann S, et al. Endothelial nitric oxide synthase protein is reduced in the renal medulla of two-kidney, one-clip hypertensive rats. J Hypertens 2001;19:1665–73.

    Article  CAS  PubMed  Google Scholar 

  13. Sitar ME. Asymmetric dimethylarginine and its relation As a biomarker in nephrologic diseases. Biomark Insights 2016;11:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eiselt J, Rajdl D, Racek J, Vostrý M, Rulcová K, Wirth J. Asymmetric dimethylarginine and progression of chronic kidney disease? a one-year follow-up study. Kidney Blood Press Res 2014;39:50–7.

    Article  CAS  PubMed  Google Scholar 

  15. Hewedy WA, Mostafa DK. Nebivolol suppresses asymmetric dimethylarginine and attenuates cyclosporine-induced nephrotoxicity and endothelial dysfunction in rats. Pharmacol Rep 2016;68:1319–25.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Zhang M, Liu Y, Liu Y, Chen M. The effect of nebivolol on asymmetric dimethylarginine system in spontaneously hypertension rats. Vascul Pharmacol 2011;54:36–43.

    Article  CAS  PubMed  Google Scholar 

  17. Shao W, Miyata K, Katsurada A, Satou R, Seth DM, Rosales CB, et al. Increased angiotensinogen expression, urinary angiotensinogen excretion, and tissue injury in nonclipped kidneys of two-kidney, one-clip hypertensive rats. Am J Physiol Renal Physiol 2016;311:F278–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prieto MC, González-Villalobos RA, Botros FT, Martin VL, Pagán J, Satou R, et al. Reciprocal changes in renal ACE/ANG II and ACE2/ANG 1–7 are associated with enhanced collecting duct renin in Goldblatt hypertensive rats. Am J Physiol Renal Physiol 2011;300:F749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dias AT, Cintra AS, Frossard JC, Palomino Z, Casarini DE, Gomes IB, et al. Inhibition of phosphodiesterase 5 restores endothelial function in enovascular hypertension. J Transl Med 2014;12:250.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Prieto MC, Botros FT, Kobori H, Navar LG. Collecting duct renin: a major player in angiotensin II-dependent hypertension. J Am Soc Hypertens 2009;3:96–104.

    Article  Google Scholar 

  21. Wang Y, Zhang F, Liu Y, Yin S, Pang X, Li Z, et al. Nebivolol alleviates aortic remodeling through eNOS upregulation and inhibition of oxidative stress in l-NAME-induced hypertensive rats. Clin Exp Hypertens 2017;39:628–39.

    Article  CAS  PubMed  Google Scholar 

  22. Polichnowski AJ, Cowley Jr. AW. Pressure-induced renal injury in angiotensin II versus norepinephrine-induced hypertensive rats. Hypertension 2009;54:1269–77.

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Chuang PY, D’Agati VD, Dai Y, Yacoub R, Fu J, et al. Nephrin preserves podocyte viability and glomerular structure and function in adult kidneys. J Am Soc Nephrol 2015;26:2361–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finne K, Vethe H, Skogstrand T, Leh S, Dahl TD, Tenstad O, et al. Proteomic analysis of formalin-fixed paraffin-embedded glomeruli suggests depletion of glomerular filtration barrier proteins in two-kidney, one-clip hypertensive rats. Nephrol Dial Transplant 2014;29:2217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 2009;20:489–94.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Toblli JE, Cao G, Giani JF, Muñoz MC, Angerosa M, Dominici FP. Long-term treatment with nebivolol attenuates renal damage in Zucker diabetic fatty rats. J Hypertens 2011;29:1613–23.

    Article  CAS  PubMed  Google Scholar 

  27. Habibi J, Hayden MR, Sowers JR, Pulakat L, Tilmon RD, Manrique C, et al. Nebivolol attenuates redox-sensitive glomerular and tubular mediated proteinuria in obese rats. Endocrinology 2011;152:659–68.

    Article  CAS  PubMed  Google Scholar 

  28. Pires MJ, Rodríguez-Peña AB, Arévalo M, Cenador B, Evangelista S, Esteller A, et al. Long-term nebivolol administration reduces renal fibrosis and prevents endot helial dysfunction in rats with hypertension induced by renal mass reduction. J Hypertens 2007;25:2486–96.

    Article  CAS  PubMed  Google Scholar 

  29. Gao S, Park BM, Cha SA, Bae UJ, Park BH, Park WH, et al. Oxidative stress increases the risk of pancreatic β cell damage in chronic renal hypertensive rats. Physiol Rep 2016;4:pii: e12900.

    Google Scholar 

  30. Xiao L, Dong JH, Jin S, Xue HM, Guo Q, Teng X, et al. Hydrogen sulfide improves endothelial dysfunction via downregulating BMP4/COX-2 pathway in rats with hypertension. Oxid Med Cell Longev 2016;2016:8128957

    PubMed  PubMed Central  Google Scholar 

  31. Mason RP, Kalinowski L, Jacob RF, Jacoby AM, Malinski T. Nebivolol reduces nitroxidative stress and restores nitric oxide bioavailability in endothelium of black Americans. Circulation 2005;112:3795–801.

    Article  CAS  PubMed  Google Scholar 

  32. Xue H, Zhou S, Xiao L, Guo Q, Liu S, Wu Y. Hydrogen sulfide improves the endothelial dysfunction in Renovascular hypertensive rats. Physiol Res 2015;64:663–72.

    Article  CAS  PubMed  Google Scholar 

  33. do Vale GT, Gonzaga NA, Simplicio JA, Tirapelli CR. Nebivolol prevents ethanol-induced reactive oxygen species generation and lipoperoxidation in the rat kidney by regulating NADPH oxidase activation and expression. Eur J Pharmacol 2017;799:33–40.

    Article  PubMed  CAS  Google Scholar 

  34. Sattarinezhad E, Panjehshahin MR, Torabinezhad S, Kamali-Sarvestani E, Farjadian S4, Pirsalami F, et al. Protective effect of edaravone against cyclosporine-Induced chronic nephropathy through antioxidant and nitric oxide modulating pathways in rats. Iran J Med Sci 2017;42:170–8.

    PubMed  PubMed Central  Google Scholar 

  35. Boels MG, van Faassen EE, Avramut MC, van der Vlag J, van den Berg BM, Rabelink TJ. Direct observation of enhanced nitric oxide in a murine model of diabetic nephropathy. PLoS One 2017;12:e0170065.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Yun Z, Yu-Ping Y, Zong-Wu T, Yang S, Fang Y, Fang S. Association of endothelial nitric oxide synthase gene polymorphisms with end-stage renal disease: a systematic review and meta-analysis. Ren Fail 2014;36:987–93.

    Article  PubMed  Google Scholar 

  37. Ahmeda AF, Alzoghaibi M. Factors regulating the renal circulation in spontaneously hypertensive rats. Saudi J Biol Sci 2016;23:441–51.

    Article  PubMed  Google Scholar 

  38. Babu CS, Kalaivani P, Ranju V, Sathiya S, Anbarasi C, Mahadevan MV, et al. A polyherbal Siddha medicine, alleviates hypertension via AT1R and eNOS signaling pathway in 2K1C hypertensive rats. Exp Biol Med (Maywood) 2014;239:758–69.

    Article  CAS  Google Scholar 

  39. Zhou WT, Abdurahman A, Abdusalam E, Yiming W, Abliz P, Aji Q, et al. Effect of cydonia oblonga Mill. Leaf extracts or captopril on blood pressure and related biomarkers in renal hypertensive rats. J Ethnopharmacol 2014;153:635–40.

    Article  CAS  PubMed  Google Scholar 

  40. Alam MA, Chowdhury MRH, Jain P, Sagor MAT, Reza HM. DPP-4 inhibitor sitagliptin prevents inflammation and oxidative stress of heart and kidney in twokidney and one clip (2K1C) rats. Diabetol Metab Syndr 2015;7:107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hultström M, Helle F, Iversen BM. AT1 receptor activation regulates the mRNA expression of CAT1, CAT2, arginase-1, and DDAH2 in preglomerular vessels from angiotensin II hypertensive rats. Am J Physiol Renal Physiol 2009;297:F163–8.

    Article  PubMed  CAS  Google Scholar 

  42. Wu XQ, Kong X, Zhou Y, Huang K, Yang JR, Li XL. Sesamin exerts renoprotective effects by enhancing NO bioactivity in renovascular hypertensive rats fed with high-fat-sucrose diet. Eur J Pharmacol 2012;683:231–7.

    Article  CAS  PubMed  Google Scholar 

  43. Tain YL, Hsu CN. Targeting on asymmetric dimethylarginine-Related nitric oxide-Reactive oxygen species imbalance to reprogram the development of hypertension. Int J Mol Sci 2016;17 pii: E2020.

    Article  PubMed  CAS  Google Scholar 

  44. Ojima A, Ishibashi Y, Matsui T, Maeda S, Nishino Y, Takeuchi M, et al. Glucagon-like peptide-1 receptor agonist inhibits asymmetric dimethylarginine generation in the kidney of streptozotocin-induced diabetic rats by blocking advanced glycation end product-induced protein arginine methyltranferase-1 expression. Am J Pathol 2013;182:132–41.

    Article  CAS  PubMed  Google Scholar 

  45. Cardounel AJ, Cui H, Samouilov A, Johnson W, Kearns P, Tsai AL, et al. Evidence for the pathophysiological role of endogenous methylarginines in regulation of endothelial NO production and vascular function. J Biol Chem 2007;282:879–87.

    Article  CAS  PubMed  Google Scholar 

  46. Erşahin M, Sehirli O, Toklu HZ, Süleymanoglu S, Emekli-Alturfan E, Yarat A, et al. Melatonin improves cardiovascular function and ameliorates renal, cardiac and cerebral damage in rats with renovascular hypertension. J Pineal Res 2009;47:97–106.

    Article  PubMed  CAS  Google Scholar 

  47. Nijveldt RJ, Teerlink T, van Guldener C, Prins HA, van Lambalgen AA, Stehouwer CD, et al. Handling of asymmetrical dimethylarginine and symmetrical dimethylarginine by the rat kidney under basal conditions and during endotoxaemia. Nephrol Dial Tranplant 2003;18:2542–50.

    Article  CAS  Google Scholar 

  48. Bulau P, Zakrzewicz D, Kitowska K, Leiper J, Gunther A, Grimminger F, et al. Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. Am J Physiol Lung Cell Mol Physiol 2007;292:L18–24.

    Article  CAS  PubMed  Google Scholar 

  49. Shi L, Zhao C, Wang H, Lei T, Liu S, Cao J, et al. Dimethylarginine dimethylaminohydrolase 1 deficiency induces the epithelial to mesenchymal transition in renal proximal tubular epithelial cells and exacerbates kidney damage in aged and diabetic mice. Antioxid Redox Signal 2017;27:1347–60.

    Article  CAS  PubMed  Google Scholar 

  50. Bai F, Makino T, Ono T, Mizukami H. Anti-hypertensive effects of shichimotsukokato in 5/6 nephrectomized Wistar rats mediated by the DDAH-ADMA-NO pathway. J Nat Med 2012;66:583–90.

    Article  PubMed  Google Scholar 

  51. Wakino S, Hayashi K, Tatematsu S, Hasegawa K, Takamatsu I, Kanda T, et al. Pioglitazone lowers systemic asymmetric dimethylarginine by inducing dimethylarginine dimethylaminohydrolase in rats. Hypertens Res 2005;28:255–62.

    Article  CAS  PubMed  Google Scholar 

  52. Helle F, Hultström M, Skogstrand T, Palm F, Iversen BM. Angiotensin II-induced contraction is attenuated by nitric oxide in afferent arterioles from the nonclipped kidney in 2K1C. Am J Physiol Renal Physiol 2009;296:F78–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Niu, M., Yin, S. et al. Nephroprotective effects of nebivolol in 2K1C rats through regulation of the kidney ROS-ADMA-NO pathway. Pharmacol. Rep 70, 917–929 (2018). https://doi.org/10.1016/j.pharep.2018.04.004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2018.04.004

Keywords

Navigation