Skip to main content
Log in

Advances in detection and characterization of atherosclerosis using contrast agents targeting the macrophage

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

With advances in imaging technology and our understanding of the role of inflammation in atherosclerosis, the macrophage appears to be an excellent target for imaging the progression of disease. In addition to imaging the macrophage with only 1 modality, contrast agents can be created that can be imaged with multiple modalities. This seems extremely attractive, as lesion morphology and characteristics can be determined with modalities that provide high picture resolution, such as CT or MRI, whereas macrophage quantity can be accurately determined through the creation of a radiolabeled contrast agent such as FDG via PET. Although this combination of imaging technologies may yield clinically useful data, the associated cost would likely be quite high, and further studies are necessary to validate this approach before it achieves widespread use. The area in which macrophage detection may reach wide clinical utility first is likely the detection of high-risk carotid atherosclerotic plaque. If limitations in coronary image resolution are overcome in the setting of MRI and other imaging technologies, the ability to detect high-risk lesions in the coronary tree through molecular imaging may greatly change how we determine which lesions require therapy and how patients are managed. Therefore we believe that contrast agents that specifically target the macrophage may aid in the detection and risk stratification of atherosclerotic plaque and aid in determining which therapy will best reduce patient morbidity and mortality rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988;12:56–62.

    PubMed  CAS  Google Scholar 

  2. Little WC, Constantinescu M, Applegate RJ, et al. Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?. Circulation 1988;78:1157–66.

    PubMed  CAS  Google Scholar 

  3. Kannel WB. Some lessons in cardiovascular epidemiology from Framingham. Am J Cardiol 1976;37:269–82.

    Article  PubMed  CAS  Google Scholar 

  4. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993;69:377–81.

    Article  PubMed  CAS  Google Scholar 

  5. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–9.

    Article  PubMed  CAS  Google Scholar 

  6. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999;282:2035–42.

    Article  PubMed  CAS  Google Scholar 

  7. McGill HC Jr. Fatty streaks in the coronary arteries and aorta. Lab Invest 1968;18:560–4.

    PubMed  Google Scholar 

  8. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease. Curr Opin Lipidol 2001;12:383–9.

    Article  PubMed  CAS  Google Scholar 

  9. Cushing S, Berliner J, Valente A, et al. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 1990;87:5134–8.

    Article  PubMed  CAS  Google Scholar 

  10. Gosling J, Slaymaker S, Gu L, et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999;103:773–8.

    Article  PubMed  CAS  Google Scholar 

  11. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894–7.

    Article  PubMed  CAS  Google Scholar 

  12. Dansky HM, Barlow CB, Lominska C, et al. Adhesion of monocytes to arterial endothelium and initiation of atherosclerosis are critically dependent on vascular cell adhesion molecule-1 gene dosage. Arterioscler Thromb Vasc Biol 2001;21:1662–7.

    Article  PubMed  CAS  Google Scholar 

  13. Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation 2006; 113:2245–52.

    Article  PubMed  Google Scholar 

  14. O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE. Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 1996;93:672–82.

    PubMed  CAS  Google Scholar 

  15. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A 1979;76:333–7.

    Article  PubMed  CAS  Google Scholar 

  16. Krieger M, Abrams JM, Lux A, Steller H. Molecular flypaper, atherosclerosis, and host defense: structure and function of the macrophage scavenger receptor. Cold Spring Harb Symp Quant Biol 1992;57:605–9.

    PubMed  CAS  Google Scholar 

  17. Hamilton JA, Myers D, Jessup W, et al. Oxidized LDL can induce macrophage survival, DNA synthesis, and enhanced proliferative response to CSF-1 and GM-CSF. Arterioscler Thromb Vasc Biol 1999;19:98–105.

    PubMed  CAS  Google Scholar 

  18. Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941–4.

    Article  PubMed  CAS  Google Scholar 

  19. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983;50:127–34.

    Article  PubMed  CAS  Google Scholar 

  20. Matrisian LM. The matrix-degrading metalloproteinases. Bioessays 1992;14:455–63.

    Article  PubMed  CAS  Google Scholar 

  21. Zingg JM, Ricciarelli R, Azzi A. Scavenger receptors and modified lipoproteins: fatal attractions?. IUBMB Life 2000;49:397–403.

    Article  PubMed  CAS  Google Scholar 

  22. Araki N, Higashi T, Mori T, et al. Macrophage scavenger receptor mediates the endocytic uptake and degradation of advanced glycation end products of the Maillard reaction. Eur J Biochem 1995;230:408–15.

    Article  PubMed  CAS  Google Scholar 

  23. Boullier A, Bird DA, Chang MK, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 2001;947:214–22; discussion 222-3.

    Article  PubMed  CAS  Google Scholar 

  24. Gough PJ, Greaves DR, Suzuki H, et al. Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1999;19:461–71.

    PubMed  CAS  Google Scholar 

  25. Babaev VR, Gleaves LA, Carter KJ, et al. Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vasc Biol 2000;20:2593–9.

    PubMed  CAS  Google Scholar 

  26. Sakaguchi H, Takeya M, Suzuki H, et al. Role of macrophage scavenger receptors in diet-induced atherosclerosis in mice. Lab Invest 1998;78:423–34.

    PubMed  CAS  Google Scholar 

  27. Suzuki H, Kurihara Y, Takeya M, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997;386:292–6.

    Article  PubMed  CAS  Google Scholar 

  28. Febbraio M, Podrez EA, Smith JD, et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000;105:1049–56.

    Article  PubMed  CAS  Google Scholar 

  29. Nakata A, Nakagawa Y, Nishida M, et al. CD36, a novel receptor for oxidized low-density lipoproteins, is highly expressed on lipid-laden macrophages in human atherosclerotic aorta. Arterioscler Thromb Vasc Biol 1999;19:1333–9.

    PubMed  CAS  Google Scholar 

  30. Lipinski MJ, Amirbekian V, Frias JC, et al. MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 2006 Aug 10 [E pub ahead of print].

  31. Lipinski MJ, Frias JC, Aguinaldo JGS, et al. Macrophage detection in atherosclerotic plaque using gadolinium-containing immunomicelles and MRI. American Heart Association Scientific Session. New Orleans: Circulation; 2004, [abstract] 663.

    Google Scholar 

  32. Amirbekian V, Amirbekian S, Lipinski MJ, Aguinaldo JGS, Frias JC, Fayad ZA. MR imaging (in vivo) of apo-E -/- mice to assess atherosclerosis with gadolinium-containing micelles and immunomicelles molecularly targeted to macrophages. Proceedings of the Radiological Society of North America (RSNA). Chicago, Ill, 2005, [abstract] SSA11-02.

  33. Gustafsson B, Youens S, Louie AY. Development of contrast agents targeted to macrophage scavenger receptors for MRI of vascular inflammation. Bioconjug Chem 2006;17:538–47.

    Article  PubMed  CAS  Google Scholar 

  34. Lees AM, Lees RS, Schoen FJ, et al. Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 1988;8:461–70.

    PubMed  CAS  Google Scholar 

  35. Iuliano L, Mauriello A, Sbarigia E, Spagnoli LG, Violi F. Radiolabeled native low-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic plaque: effect of vitamin E supplementation. Circulation 2000;101:1249–54.

    PubMed  CAS  Google Scholar 

  36. Gurudutta GU, Babbar AK, Shailaja S, Soumya P, Sharma RK. Evaluation of potential tracer ability of (99m)Tc-labeled acetylated LDL for scintigraphy of LDL-scavenger receptor sites of macrophageal origin. Nucl Med Biol 2001;28:235–41.

    Article  PubMed  CAS  Google Scholar 

  37. Mitsumori LM, Ricks JL, Rosenfeld ME, Schmiedl UP, Yuan C. Development of a lipoprotein based molecular imaging MR contrast agent for the noninvasive detection of early atherosclerotic disease. Int J Cardiovasc Imaging 2004;20:561–7.

    Article  PubMed  CAS  Google Scholar 

  38. Frias JC, Williams KJ, Fisher EA, Fayad ZA. Recombinant HDL-like nanoparticles: a specific contrast agent for MRI of atherosclerotic plaques. J Am Chem Soc 2004;126:16316–7.

    Article  PubMed  CAS  Google Scholar 

  39. Krieger M. Scavenger receptor class B type I is a multiligand HDL receptor that influences diverse physiologic systems. J Clin Invest 2001;108:793–7.

    PubMed  CAS  Google Scholar 

  40. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996;271:518–20.

    Article  PubMed  CAS  Google Scholar 

  41. Cuchel M, Rader DJ. Macrophage reverse cholesterol transport: key to the regression of atherosclerosis? Circulation 2006;113:2548–55.

    Article  PubMed  Google Scholar 

  42. Benderbous S, Corot C, Jacobs P, Bonnemain B. Superparamagnetic agents: physicochemical characteristics and preclinical imaging evaluation. Acad Radiol 1996;3(Suppl 2):S292–4.

    Article  PubMed  Google Scholar 

  43. Weissleder R, Elizondo G, Wittenberg J, Rabito C, Bengele H, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489–93.

    PubMed  CAS  Google Scholar 

  44. Saini S, Stark D, Hahn P, Wittenberg J, Brady T, Ferrucci J Jr. Ferrite particles: a superparamagnetic MR contrast agent for the reticuloendothelial system. Radiology 1987;162:211–6.

    PubMed  CAS  Google Scholar 

  45. Raynal I, Prigent P, Peyramaure S, Najid A, Rebuzzi C, Corot C. Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran- 10. Invest Radiol 2004;39:56–63.

    Article  PubMed  CAS  Google Scholar 

  46. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall super- paramagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001;103:415–22.

    PubMed  CAS  Google Scholar 

  47. Litovsky S, Madjid M, Zarrabi A, Casscells SW, Willerson JT, Naghavi M. Superparamagnetic iron oxide-based method for quantifying recruitment of monocytes to mouse atherosclerotic lesions in vivo: enhancement by tissue necrosis factor-alpha, interleukin-1beta, and interferon-gamma. Circulation 2003;107:1545–9.

    Article  PubMed  Google Scholar 

  48. Schmitz SA, Coupland SE, Gust R, et al. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 2000;35:460–71.

    Article  PubMed  CAS  Google Scholar 

  49. Hyafil F, Laissy JP, Mazighi M, et al. Ferumoxtran-10-enhanced MRI of the hypercholesterolemic rabbit aorta: relationship between signal loss and macrophage infiltration. Arterioscler Thromb Vasc Biol 2006;26:176–81.

    Article  PubMed  CAS  Google Scholar 

  50. Kooi ME, Cappendijk VC, Cleutjens KB, et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003;107:2453–8.

    Article  PubMed  CAS  Google Scholar 

  51. Trivedi RA, Mallawarachi C, U-King-Im JM, et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol 2006;26:1601–6.

    Article  PubMed  CAS  Google Scholar 

  52. Siglienti I, Bendszus M, Kleinschnitz C, Stoll G. Cytokine profile of iron-laden macrophages: implications for cellular magnetic resonance imaging. J Neuroimmunol 2006;173:166–73.

    Article  PubMed  CAS  Google Scholar 

  53. Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA. Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5T and 3T. Magn Reson Med 2006;55:126–35.

    Article  PubMed  CAS  Google Scholar 

  54. Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006;47:C57–68.

    Article  PubMed  CAS  Google Scholar 

  55. Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: a new observation. Clin Nucl Med 2001;26:314–9.

    Article  PubMed  CAS  Google Scholar 

  56. Lederman RJ, Raylman RR, Fisher SJ, et al. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl Med Commun 2001;22:747–53.

    Article  PubMed  CAS  Google Scholar 

  57. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  58. Davies JR, Rudd JHF, Fryer TD, et al. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005;36:2642–7.

    Article  PubMed  Google Scholar 

  59. Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med 2005;46:1278–84.

    PubMed  Google Scholar 

  60. Matter CM, Wyss MT, Meier P, et al. 18F-choline images murine atherosclerotic plaques ex vivo. Arterioscler Thromb Vasc Biol 2006;26:584–9.

    Article  PubMed  CAS  Google Scholar 

  61. Lipinski MJ, Fuster V, Fisher EA, Fayad ZA. Technology insight: targeting of biological molecules for evaluation of high-risk atherosclerotic plaques with magnetic resonance imaging. Nat Clin Pract Cardiovasc Med 2004;1:48–55.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahi A. Fayad.

Additional information

Partial support was provided by National Institutes of Health/National Heart, Lung, and Blood Institute grants R01 HL71021 and R01 HL78667 (Z.A.F.), as well as The Zena and Michael A. Wiener Cardiovascular Institute and The Marie-Josée and Henry R. Kravis Cardiovascular Health Center and Department of Radiology, Mount Sinai School of Medicine, and the Stanley J. Sarnoff Endowment for Cardiovascular Science (M.J.L.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lipinski, M.J., Frias, J.C. & Fayad, Z.A. Advances in detection and characterization of atherosclerosis using contrast agents targeting the macrophage. J Nucl Cardiol 13, 699–709 (2006). https://doi.org/10.1016/j.nuclcard.2006.07.004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.07.004

Keywords

Navigation