Skip to main content

Advertisement

Log in

Fourth Annual Mario S. Verani, MD Memorial Lecture: Noninvasive imaging in coronary artery disease: Changing roles, changing players

  • Published:
Journal of Nuclear Cardiology Aims and scope

Conclusion

This review has suggested that there is an interaction between the noninvasive assessment of coronary anatomic abnormality-through the CCS or coronary CTA-and the assessment of the functional consequences of disease by use of gated MPS, PET, or potentially, CMR. Additional information of clinical importance may come from the assessment of biomarkers of inflammation, such as high-sensitivity C-reactive protein50 or, more recently, lipoprotein-associated phospholipase A2,51 which appears to be even more specific for vascular inflammation. Given the strength of the evidence supporting the use of MPS and PET, the ease and effectiveness with which these approaches can be used in patients with known disease and in the elderly, and the great untapped potential of these approaches in molecular imaging, it is likely that there will continue to be growth for several years in the use of MPS and PET for assessing patients with known or suspected cardiovascular disease. It is imperative that physicians recognize the potential that overuse of expensive diagnostic testing could “break the bank,” resulting in controls of utilization that would lessen the beneficial impact of the powerful tools we are so fortunate to have available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muller JE, Tawakol A, Kathiresan S, Narula J. New opportunities for identification and reduction of coronary risk: treatment of vulnerable patients, arteries, and plaques. J Am Coll Cardiol 2006;47:C2–6.

    Article  PubMed  Google Scholar 

  2. Narula J, Virmani R, Iskandrian AE. Strategic targeting of atherosclerotic lesions. J Nucl Cardiol 1999;6:81–90.

    Article  PubMed  CAS  Google Scholar 

  3. Gould KL. Coronary artery stenosis and reversing atherosclerosis. 2nd ed. London: Arnold Publishers; 1999.

    Google Scholar 

  4. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995;92:2333–42.

    PubMed  CAS  Google Scholar 

  5. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 1995;92:2157–62.

    PubMed  CAS  Google Scholar 

  6. Daniell AL, Wong ND, Friedman JD, et al. Concordance of coronary artery calcium estimates between MDCT and electron beam tomography. AJR Am J Roentgenol 2005;185:1542–45.

    Article  PubMed  Google Scholar 

  7. Achenbach S, Giesler T, Ropers D, et al. Detection of coronary artery stenoses by contrast-enhanced, retrospectively electrocardiographically- gated, multislice spiral computed tomography. Circulation 2001;103:2535–8.

    PubMed  CAS  Google Scholar 

  8. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002;106:2051–4.

    Article  PubMed  Google Scholar 

  9. Achenbach S. Society of Cardiovascular Computed Tomography Web site. 2005. Available from: URL: www.scct.org

  10. Fine JJ, Hopkins CB, Ruff N, Newton FC. Comparison of accuracy of 64-slice cardiovascular computed tomography with coronary angiography in patients with suspected coronary artery disease. Am J Cardiol 2006;97:173–4.

    Article  PubMed  Google Scholar 

  11. Leshcka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005;26:1482–7.

    Article  Google Scholar 

  12. Ropers D, Rixe J, Anders K, et al. Usefulness of multidetector row spiral computed tomography with 64-x 0.6-mm collimation and 330-ms rotation for the noninvasive detection of significant coronary artery stenoses. Am J Cardiol 2006;97:343–8.

    Article  PubMed  Google Scholar 

  13. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA. Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46:552–7.

    Article  PubMed  Google Scholar 

  14. Leber A, Knez A, Ziegler FV, et al. Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 2005;46:147–54.

    Article  PubMed  Google Scholar 

  15. Mollet NR, Cademartiri F, van Mieghem CA, et al. Highresolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 2005;112:2318–23.

    Article  PubMed  Google Scholar 

  16. Coles DR, Smail MA, Negus IS, et al. Comparison of radiation doses from multislice computed tomography coronary angiography and conventional diagnostic angiography. J Am Coll Cardiol 2006;47:1840–5.

    Article  PubMed  Google Scholar 

  17. Mieres JH, Shaw LJ, Arai A, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: consensus statement from the Cardiac Imaging Committee, Council on Clinical Cardiology, and the Cardiovascular Imaging and Intervention Committee, Council on Cardiovascular Radiology and Intervention, American Heart Association. Circulation 2005;111:682–96.

    Article  PubMed  Google Scholar 

  18. Selvanayagam JB, Jerosch-Herold M, Porto I, et al. Resting myocardial blood flow is impaired in hibernating myocardium: a magnetic resonance study of quantitative perfusion assessment. Circulation 2005;112:3289–96.

    Article  PubMed  Google Scholar 

  19. Panting JR, Gatehouse PD, Yang GZ, et al. Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular magnetic resonance imaging. N Engl J Med 2002;346:1948–53.

    Article  PubMed  Google Scholar 

  20. Shaw LJ, Bairey Merz CN, Pepine CJ, et al. Insights from the NHLBI-Sponsored Women’s Ischemia Syndrome Evaluation (WISE) study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol 2006;47:S4–20.

    Article  PubMed  Google Scholar 

  21. Berman DS, Hachamovitch R, Shaw LJ, et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: assessment of patients with suspected coronary artery disease. J Nucl Med 2006;47:74–82.

    PubMed  Google Scholar 

  22. Berman DS, Hachamovitch R, Shaw LJ, Hayes SW, Germano G. Nuclear cardiology. In: Fuster V, Alexander RW, O’Rourke RA, Roberts R, King SB, Wellens HJJ, editors. Hurst’s the heart. 11th ed. New York: McGraw-Hill; 2004. p. 563–97.

    Google Scholar 

  23. Shaw LJ, Hachamovitch R, Berman DS, et al. The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. J Am Coll Cardiol 1999;33:661–9.

    Article  PubMed  CAS  Google Scholar 

  24. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  25. Slomka PJ, Nishina H, Berman DS, et al. Automated quantification of myocardial perfusion SPECT using simplified normal limits. J Nucl Cardiol 2005;12:66–77.

    Article  PubMed  Google Scholar 

  26. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC Guidelines for the Clinical Use of Cardiac Radionuclide Imaging- Executive Summary. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation 2003;108:1404–18.

    Article  PubMed  Google Scholar 

  27. Slomka PJ, Nishina H, Berman DS, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 2004;45:1128–34.

    PubMed  Google Scholar 

  28. Taillefer R, DePuey EG, Udelson JE, Beller GA, Benjamin C, Gagnon A. Comparison between the end-diastolic images and the summed images of gated 99mTc-sestamibi SPECT perfusion study in detection of coronary artery disease in women. J Nucl Cardiol 1999;6:169–76.

    Article  PubMed  CAS  Google Scholar 

  29. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Oxford: Saunders; 2003.

    Google Scholar 

  30. Lima RS WD, Goode AR, Siadaty MS, Ragosta M, Beller GA, Samady H. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003;42:64–70.

    Article  PubMed  Google Scholar 

  31. Yu M, Mistry M, Guaraldi M, et al. [F-18]-RP1012: a novel myocardial perfusion imaging agent for use with positron emission tomography (PET) [abstract]. Circulation 2005;112:II-761.

    Google Scholar 

  32. Berman DS, Hachamovitch R, Shaw LJ, et al. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance. Part II: noninvasive risk stratification and a conceptual framework for the selection of noninvasive imaging tests in patients with known or suspected coronary artery disease. J Nucl Med. In press 2006.

  33. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003;228: 826–33.

    Article  PubMed  Google Scholar 

  34. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic disease events: the St. Francis Heart Study. J Am Coll Cardiol 2005;46:158–65.

    Article  PubMed  CAS  Google Scholar 

  35. Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean 3-year outcomes in the prospective army coronary calcium project. J Am Coll Cardiol 2005;46:807–14.

    Article  PubMed  CAS  Google Scholar 

  36. He ZX, Hedrick TD, Pratt CM, et al. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation 2000;101:244–51.

    PubMed  CAS  Google Scholar 

  37. Berman DS, Wong ND, Gransar H, et al. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 2004;44:923–30.

    Article  PubMed  CAS  Google Scholar 

  38. Anand DV, Lim E, Raval U, Lipkin D, Lahiri A. Prevalence of silent myocardial ischemia in asymptomatic individuals with subclinical atherosclerosis detected by electron beam tomography. J Nucl Cardiol 2004;11:450–7.

    Article  PubMed  Google Scholar 

  39. Wong ND, Rozanski A, Gransar H, et al. Metabolic syndrome and diabetes are associated with an increased likelihood of inducible myocardial ischemia among patients with subclinical atherosclerosis. Diabetes Care 2005;28:1445–50.

    Article  PubMed  Google Scholar 

  40. Wackers FJ, Young LH, Inzucchi SE, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  41. Naghavi M, Falk E, Hecht H, et al. From vulnerable plaque to vulnerable patient (part III): Executive summary of the screening for Heart Attack Prevention and Education (SHAPE) Task Force Report. J Am Coll Cardiol. In press 2006.

  42. Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 1979;300:1350–8.

    PubMed  CAS  Google Scholar 

  43. Diamond GA, Staniloff HM, Forrester JS, Pollock BH, Swan HJ. Computer-assisted diagnosis in the noninvasive evaluation of patients with suspected coronary artery disease. J Am Coll Cardiol 1983;1:444–55.

    Article  PubMed  CAS  Google Scholar 

  44. Hoffmann U, Ferencik M, Cury RC, Pena AJ. Coronary CT angiography. J Nucl Med 2006;47:797–806.

    PubMed  Google Scholar 

  45. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Stress myocardial perfusion SPECT is clinically effective and cost-effective in risk-stratification of patients with a high likelihood of CAD but no known CAD. J Am Coll Cardiol 2004;43: 200–8.

    Article  PubMed  Google Scholar 

  46. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  47. Rudd JH, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11.

    Article  PubMed  CAS  Google Scholar 

  48. Kietselaer BL, Reutelingsperger CP, Heidendal GA, et al. Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N Engl J Med 2004;350:1472–3.

    Article  PubMed  CAS  Google Scholar 

  49. Braunwald E. Epilogue: what do clinicians expect from imagers? J Am Coll Cardiol 2006;47:C101–3.

    Article  PubMed  Google Scholar 

  50. Zouridakis E, Avanzas P, Arroyo-Espliguero R, Fredericks S, Kaski JC. Markers of inflammation and rapid coronary artery disease progression in patients with stable angina pectoris. Circulation 2004;110:1747–53.

    Article  PubMed  CAS  Google Scholar 

  51. Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoproteinassociated phospholipase A2, high-sensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation 2004;109:837–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Berman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, D.S. Fourth Annual Mario S. Verani, MD Memorial Lecture: Noninvasive imaging in coronary artery disease: Changing roles, changing players. J Nucl Cardiol 13, 457–473 (2006). https://doi.org/10.1016/j.nuclcard.2006.05.009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.05.009

Keywords

Navigation