Skip to main content
Log in

Cross-sectional vascular imaging with CT and MR angiography

  • Published:
Journal of Nuclear Cardiology Aims and scope

Conclusion

Both CTA and MRA are highly advanced noninvasive vascular imaging modalities. CTA is more readily available with approximately 30,000 installed systems worldwide. MDCTA offers faster scan times than ceMRA and offers higher resolution. Disadvantages are the use of ionizing radiation and nephrotoxic contrast agents. Calcified plaques occasionally can make the determination of ruminai patency difficult. MRA does not have this problem, but offers somewhat inferior spatial resolution and is unsuitable for the evaluation of the patency of stented vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prokop M. Multislice CT angiography. Eur J Radiol 2000;36:86- 96.

    Article  PubMed  CAS  Google Scholar 

  2. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breathhold technique, continuous transport, and continuous scanner rotation. Radiology 1990;176:181–3.

    PubMed  CAS  Google Scholar 

  3. Kalender WA, Polacin A. Physical performance characteristics of spiral CT scanning. Med Phys 1991;18:910–5.

    Article  PubMed  CAS  Google Scholar 

  4. Liang Y, Kruger RA. Dual-slice spiral versus single-slice spiral scanning: comparison of the physical performance of two computed tomography scanners. Med Phys 1996;23:205–20.

    Article  PubMed  CAS  Google Scholar 

  5. Klingenbeck-Regn K, Schaller S, Flohr T, Ohnesorge B, Kobb AF, Baum U. Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 1999;31:110–24.

    Article  PubMed  CAS  Google Scholar 

  6. McCollough CH, Zink FE. Performance evaluation of a multi-slice CT system. Med Phys 1999;26:2223–30.

    Article  PubMed  CAS  Google Scholar 

  7. Hu H, He HD, Foley WD, Fox SH. Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 2000;215:55–62.

    PubMed  CAS  Google Scholar 

  8. Rince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging 1993;3:877–81.

    Article  Google Scholar 

  9. Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC. Breath-hold single-dose gadolinium-enhanced three-dimensional MR aortography: usefulness of a timing examination and MR power injector. Radiology 1996;201:705–10.

    PubMed  CAS  Google Scholar 

  10. Foo TK, Saranathan M, Rince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional MR angiography. Radiology 1997;203:275–80.

    PubMed  CAS  Google Scholar 

  11. Riederer SJ, Bernstein MA, Breen JF, Busse RF, Ehman RL, Fain SB, et al. Three-dimensional contrast-enhanced MR angiography with real-time fluoroscopic triggering: design specifications and technical reliability in 330 patient studies. Radiology 2000;215:584–93.

    PubMed  CAS  Google Scholar 

  12. Svensson J, Peterson J, Stahlberg F, Larsson E, Leander P, Olsson L. Image artifacts due to a time-varying contrast medium concentration in 3D contrast-enhanced MRA. J Magn Reson Imaging 1999;10:919–28.

    Article  PubMed  CAS  Google Scholar 

  13. Wang Y, Johnston DL, Breen JF, Huston J III, Jack CR, Julsrud PR, et al. Dynamic MR digital subtraction angiography using contrast enhancement, fast data acquisition and complex subtraction. Magn Reson Med 1996;36:551–6.

    Article  PubMed  CAS  Google Scholar 

  14. Barger AV, Block WF, Torpov Y, Grist TM, Mistretta CA. Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory. Magn Reson Med 2002;48:297–305.

    Article  PubMed  Google Scholar 

  15. Peters DC, Korosec FR, Grist TM, Block WF, Holden JE, Vigen KK, et al. Undersampled projection reconstruction applied to MR angiography. Magn Reson Med 2000;43:91–101.

    Article  PubMed  CAS  Google Scholar 

  16. Ruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952–62.

    Article  Google Scholar 

  17. Sodickson KD, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591–603.

    Article  PubMed  CAS  Google Scholar 

  18. Persson A, Dahlstrom N, Engellau L, Larsson EM, Brismar TB, Smedby O. Volume rendering compared with maximum intensity projection for magnetic resonance angiography measurements of the abdominal aorta. Acta Radiol 2004;45:453–9.

    Article  PubMed  CAS  Google Scholar 

  19. Byun JH, Kim TK, Lee SS, Lee JK, Ha HK, Kim AY, et al. Evaluation of the hepatic artery in potential donors for living donor liver transplantation by computed tomography angiography using multidetector-row computed tomography: comparison of volume rendering and maximum intensity projection techniques. J Comput Assist Tomogr 2003;27:125–31.

    Article  PubMed  Google Scholar 

  20. Berg MH, Manninen HI, Vanninen RL, Vainio PA, Soimakallio S. Assessment of renal artery stenosis with CT angiography: usefulness of multiplanar reformation, quantitative stenosis measurements, and densitometric analysis of renal parenchymal enhancement as adjuncts to MIP film reading. J Comput Assist Tomogr 1998;22:533–40.

    Article  PubMed  CAS  Google Scholar 

  21. Rubin GD, Paik DS, Johnston PC, Napel S. Measurement of the aorta and its branches with helical CT. Radiology 1998;206:823–9.

    PubMed  CAS  Google Scholar 

  22. Zeman RK, Silverman PM, Berman PM, Weltman DI, Davros WJ, Gomes MN. Abdominal aortic aneurysms: evaluation with variable-collimation helical CT and overlapping reconstruction. Radiology 1994;193:555–60.

    PubMed  CAS  Google Scholar 

  23. Zeman RK, Silverman PM, Vieco PT, Costello P. CT angiography. AJR Am J Roentgenol 1995;165:1079–88.

    PubMed  CAS  Google Scholar 

  24. Rubin GD, Walker PJ, Dake MD, Napel S, Jeffrey RB, McDonnell CH, et al. Three-dimensional spiral computed tomographic angiography: an alternative imaging modality for the abdominal aorta and its branches. J Vasc Surg 1993;18:656–65.

    Article  PubMed  CAS  Google Scholar 

  25. Rubin GD, Shiau MC, Schmidt AJ, Fleischmann D, Logan L, Leung AN, et al. Computed tomographic angiography: historical perspective and new state-of-the-art using multi detector-row helical computed tomography. J Comput Assist Tomogr 1999; 23(Suppl):S83–90.

    PubMed  Google Scholar 

  26. Rokop M. Multislice CT angiography. Eur J Radiol 2000;36:86–96.

    Article  Google Scholar 

  27. Nienaber CA, von Kodolitsch Y, Nicolas V, Siglow V, Piepho A, Brockhoff C, et al. Gadolinium-enhanced MR aortography. Radiology 1994;91:155–64.

    Google Scholar 

  28. Pince MR, Narasimhan DL, Stanley IC, Chenevert TC, Williams DM, Marx MV, et al. Breath-hold gadolinium-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 1995;197:785–92.

    Google Scholar 

  29. Kim D, Edelman RR, Rent KC, Porter DH, Skillman JJ. Abdominal aorta and renal artery stenosis: evaluation with MR angiography. Radiology 1990; 174:727–31.

    PubMed  CAS  Google Scholar 

  30. Koschyk DH, Spielmann RP. The diagnosis of thoracic aortic dissection by noninvasive imaging procedures. N Engl J Med 1993;328:1–9.

    Article  PubMed  Google Scholar 

  31. Erbel R, Alfonso F, Boileau C, Dirsch O, Eber B, Haverich A, et al, Task Force on Aortic Dissection, European Society of Cardiology. Diagnosis and management of aortic dissection. Eur Heart J 2001;22:1642–81.

    Article  PubMed  CAS  Google Scholar 

  32. Gomes MN, Davros WJ, Zeman RK. Pre-operative assessment of abdominal aortic aneurysm: the value of helical and 3D computed tomography. J Vasc Surg 1994;20:367–76.

    PubMed  CAS  Google Scholar 

  33. Zeman RK, Silverman PM, Berman PM, Weltman D, Davros WJ, Gomes MN. Abdominal aortic aneurysms: findings on three-dimensional display of helical CT data. AJR Am J Roentgenol 1995;164:917–22.

    PubMed  CAS  Google Scholar 

  34. Lutz AM, Willmann JK, Pfammatter T, Lachat M, Wildermuth S, Marincek B, et al. Evaluation of aortoiliac aneurysm before endovascular repair: comparison of contrast-enhanced magnetic resonance angiography with multidetector row computed tomographic angiography with an automated analysis software tool. J Vasc Surg 2003;37:619–27.

    Article  PubMed  Google Scholar 

  35. Diehm N, Herrmann P, Dinkel HP. Multidetector CT angiography versus digital subtraction angiography for aortoiliac length measurements prior to endovascular AAA repair. J Endovasc Ther 2004; 11:527–34.

    Article  PubMed  Google Scholar 

  36. Clinical alert: benefit of carotid endarterectomy for patients with high-grade stenosis of the internal carotid artery. National Institute of Neurological Disorders and Stroke Stroke and Trauma Division. North American Symptomatic Carotid Endarterectomy Trial (NASCET) investigators. Stroke 1991;22:816–7.

  37. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998;351:1379–87.

    Google Scholar 

  38. Hathout GM, Fink JR, El-Saden SM, Grant EG. Sonographic NASCET index: a new doppler parameter for assessment of internal carotid artery stenosis. AJNR Am J Neuroradiol 2005; 26:68–75.

    PubMed  Google Scholar 

  39. Staikov IN, Nedeltchev K, Arnold M, Remonda L, Schroth G, Sturzenegger M, et al. Duplex sonographic criteria for measuring carotid stenosis. J Clin Ultrasound 2002;30:275–81.

    Article  PubMed  Google Scholar 

  40. Sabeti S, Schillinger M, Mlekusch W, Willfort A, Haumer M, Nachtmann T, et al. Quantification of internal carotid artery Stenosis with duplex US: comparative analysis of different flow velocity criteria. Radiology 2004;232:431–9.

    Article  PubMed  Google Scholar 

  41. Yuan C, Zhang SX, Polissar NL, Echelard D, Ortiz G, Davis JW, et al. Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack and stroke. Circulation 2002; 105:181–5.

    Article  PubMed  Google Scholar 

  42. Netuka D, Benes V, Mandys V, Hlasenska J, Burkert J, Benes V Jr., Accuracy of angiography and Doppler ultrasonography in the detection of carotid stenosis: a histopathological study of 123 cases. Acta Neurochir (Wien) 2006;148:511–20.

    Article  CAS  Google Scholar 

  43. Benes V, Netuka D, Mandys V, Vrabec M, Mohapl M, Benes V Jr, et al. Comparison between degree of carotid stenosis observed at angiography and in histological examination. Acta Neurochir (Wien) 2004;146:671–7.

    Article  CAS  Google Scholar 

  44. Jenkins RH, Mahal R, MacEneaney PM. Noninvasive imaging of carotid artery disease: critically appraised topic. Can Assoc Radiol J 2003;54:121–3.

    PubMed  Google Scholar 

  45. Remonda L, Senn P, Barth A, Arnold M, Lovblad KO, Schroth G. Contrast-enhanced 3D MR angiography of the carotid artery: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol 2002;23:213–9.

    PubMed  Google Scholar 

  46. Randoux B, Marro B, Koskas F, Duyme M, Sahel M, Zouaoui A, et al. Carotid artery stenosis: prospective comparison of CT, three-dimensional gadolinium-enhanced MR, and conventional angiography. Radiology 2001;220:179–85.

    PubMed  CAS  Google Scholar 

  47. Serfaty JM, Chirossel P, Chevallier JM, Ecochard R, Froment JC, Douek PC. Accuracy of three-dimensional gadolinium-enhanced MR angiography in the assessment of extracranial carotid artery disease. AJR Am J Roentgenol 2000;175:455–63.

    PubMed  CAS  Google Scholar 

  48. Anderson GB, Ashforth R, Steinke DE, Ferdinandy R, Findlay JM. CT angiography for the detection and characterization of carotid artery bifurcation disease. Stroke 2000;31:2168–74.

    PubMed  CAS  Google Scholar 

  49. Cumming MJ, Morrow IM. Carotid artery stenosis: a prospective comparison of CT angiography and conventional angiography. AJR Am J Roentgenol 1994;163:517–23.

    PubMed  CAS  Google Scholar 

  50. Magarelli N, Scarabino T, Simeone AL, Florio F, Carriero A, Salvolini U, et al. Carotid stenosis: a comparison between MR and spiral CT angiography. Neuroradiology 1998;40:367–73.

    Article  PubMed  CAS  Google Scholar 

  51. DeMarco JK, Huston J III, Bernstein MA. Evaluation of classic 2D time-of-flight MR angiography in the depiction of severe carotid stenosis. AJR Am J Roentgenol 2004;183:787–93.

    PubMed  Google Scholar 

  52. Mitra D, Connolly D, Jenkins S, English P, Birchall D, Mandel C, et al. Comparison of image quality, diagnostic confidence and interobserver variability in contrast enhanced MR angiography and 2D time of flight angiography in evaluation of carotid stenosis. Br J Radiol 2006;79:201–7.

    Article  PubMed  CAS  Google Scholar 

  53. Anzalone N, Scomazzoni F, Castellano R, Strada L, Righi C, Politi LS, et al. Carotid artery stenosis: intraindividual correlations of 3D time-of-flight MR angiography, contrast-enhanced MR angiography, conventional DSA, and rotational angiography for detection and grading. Radiology 2005;236:204–13.

    Article  PubMed  Google Scholar 

  54. Nonent M, Serfaty JM, Nighoghossian N, Rouhart F, Derex L, Rotaru C, et al. Concordance rate differences of 3 noninvasive imaging techniques to measure carotid stenosis in clinical routine practice: results of the CARMEDAS multicenter study. Stroke 2004;35:682–6.

    Article  PubMed  Google Scholar 

  55. King-Im JM, Trivedi RA, Graves MJ, Higgins NJ, Cross JJ, Tom BD, et al. Contrast-enhanced MR angiography for carotid disease: diagnostic and potential clinical impact. Neurology 2004;62:1282–90.

    Google Scholar 

  56. Steger W, Vogl TJ, Rausch M, Pegios W, Schedel H, Heinzinger K. CT angiography in carotid stenosis. Diagnostic value compared to color-coded duplex ultrasonography and MR angiography. Rofo 1995; 162:373–380.

    PubMed  CAS  Google Scholar 

  57. Bartlett ES, Walters TD, Symons SP, Fox AJ. Quantification of carotid stenosis on CT angiography. AJNR Am J Neuroradiol 2006;27:13–19.

    PubMed  CAS  Google Scholar 

  58. Nandalur KR, Baskurt E, Hagspiel KD, Finch M, Phillips CD, Bollampally SR, et al. Carotid artery calcification on CT may independently predict stroke risk. AJR Am J Roentgenol 2006; 186:547–52.

    Article  PubMed  Google Scholar 

  59. Galanski M, Prokop M, Chavan A, Schaefer CM, Jandeleit K, Nischelsky JE. Renal arterial stenoses: spiral CT angiography. Radiology 1993;189:185–92.

    PubMed  CAS  Google Scholar 

  60. Rubin GD, Dake MD, Napel S, Jeffrey RB Jr, McDonnell CH, Sommer FG, et al. Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. Radiology 1994; 190:181–9.

    PubMed  CAS  Google Scholar 

  61. Halpem EJ, Rutter CM, Gardiner GA Jr, Nazarian LN, Wechsler RJ, Levin DB, et al. Comparison of Doppler US and CT angiography for evaluation of renal artery stenosis. Acad Radiol 1998;5:524–32.

    Article  Google Scholar 

  62. Johnson PT, Halpem EJ, Kuszyk BS, Heath DG, Wechsler RJ, Nazarian LN, et al. Renal artery stenosis: CT angiography— comparison of real-time volume-rendering and maximum intensity projection algorithms. Radiology 1999;211:337–43.

    PubMed  CAS  Google Scholar 

  63. Willmann JK, Wildermuth S, Pfammatter T, Roos JE, Seifert B, Hilfiker PR, et al. Aortoiliac and renal arteries: prospective intraindividual comparison of contrast-enhanced three-dimen- sional MR angiography and multi-detector row ct angiography. Radiology 2003;226:798–811.

    Article  PubMed  Google Scholar 

  64. Eklof H, Ahlstrom H, Bostrom A, Bergqvist D, Andren B, Karacagil S, et al. Renal artery stenosis evaluated with 3D-Gd- magnetic resonance angiography using transstenotic pressure gradient as the standard of reference. A multireader study. Acta Radiol 2005;46:802–9.

    Article  PubMed  CAS  Google Scholar 

  65. Debatin JF, Spritzer CE, Grist TM, Beam C, Sverkey CP, Newman GE, et al. Imaging of the renal arteries: value of MR angiography. AJR Am J Roentgenol 1991;157:981–90.

    PubMed  CAS  Google Scholar 

  66. Volk M, Strotzer M, Lenhart M, Seitz J, Manke C, Feuerbach S, et al. Renal time-resolved MR angiography: quantitative compar- ison of gadobenate dimeglumine and gadopentetate dimeglumine with different doses. Radiology 2001;220:484–8.

    PubMed  CAS  Google Scholar 

  67. De Cobelli F, Mellone R, Salvioni M, Vanzulli A, Sironi S, Manunta P, et al. Renal artery stenosis: value of screening with three-dimensional phase-contrast MR angiography with a phased- array multicoil. Radiology 1996;201:697–703.

    PubMed  Google Scholar 

  68. Kim D, Edelman RR, Rent KC, Porter DH, Skillman JJ. Abdom- inal aorta and renal artery stenosis: evaluation with MR angiog- raphy. Radiology 1990;174:727–31.

    PubMed  CAS  Google Scholar 

  69. Leung DA, McKinnon GC, Davis CP, Pfammatter T, Krestin GP, Debatin F. Breath-hold contrast-enhanced three-dimensional MR angiography. Radiology 1996;201:569–71.

    Google Scholar 

  70. Debatin IF, Ting RH, Wegmuller H, Sommer FG, Fredrickson JD, Brosnan TJ, et al. Renal artery blood flow: quantitation with phase-contrast MR imaging with and without breath holding. Radiology 1994;190:371–8.

    PubMed  CAS  Google Scholar 

  71. Hany TF, McKinnon GC, Leung DA, Pfammatter T, Debatin IF. Optimization of contrast timing for breath-hold three-dimensional MR angiography. J Magn Reson Imaging 1997;7:551–6.

    Article  PubMed  CAS  Google Scholar 

  72. Schoenberg SO, Knopp MV, Bock M, Kallinowski F, Just A, Essig M, et al. Renal artery stenosis: grading of hemodynamic changes with cine phase-contrast MR blood flow measurements. Radiology 1997;203:45–53.

    PubMed  CAS  Google Scholar 

  73. Wasser MN, Westenberg J, van der Hulst VP, van Baelen J, van Bockel JH, van Erkel AR, et al. Hemodynamic significance of renal artery stenosis: digital subtraction angiography versus systolically gated three-dimensional phase-contrast MR angiography. Radiology 1997;202:333–8.

    PubMed  CAS  Google Scholar 

  74. Bakker J, Beek FJ, Beuder JJ, Hene RJ, de Kort GA, de Lange EE, et al. Renal artery stenosis and accessory renal arteries: accuracy of detection and visualization with gadolinium-enhanced breath-hold MR angiography. Radiology 1998;207:497–504.

    PubMed  CAS  Google Scholar 

  75. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL. Fluoroscopically triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology 1997;205:137–46.

    PubMed  CAS  Google Scholar 

  76. Rince MR, Schoenberg SO, Ward JS, Londy FJ, Wakefield TW, Stanley JC. Hemodynamically significant atherosclerotic renal artery stenosis: MR angiographic features. Radiology 1997;205:128–36.

    Google Scholar 

  77. Leung DA, Hoffmann U, Pfammatter T, Hany TF, Rainoni L, Hilfiker P, et al. Magnetic resonance angiography versus duplex sonography for diagnosing renovascular disease. Hypertension 1999;33:726–31.

    PubMed  CAS  Google Scholar 

  78. Berr SS, Hagspiel KD, Mai VM, Keilholz-George S, Knight-Scott J, Christopher JM, et al. Perfusion of the kidney using extraslice spin tagging (eST) magnetic resonance imaging. J Magn Reson Imaging 1999;10:886–91.

    Article  PubMed  CAS  Google Scholar 

  79. Vasbinder GB, Nelemans PJ, Kessels AG, Kroon AA, Maki JH, Leiner T, et al; Renal Artery Diagnostic Imaging Study in Hypertension (RADISH) Study Group. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 2004;141:674–82.

    PubMed  Google Scholar 

  80. Behar JV, Nelson RC, Zidar JP, DeLong DM, Smith TP. Thin-section multidetector CT angiography of renal artery stents. AJR Am J Roentgenol 2002;178:1155–9.

    PubMed  Google Scholar 

  81. Hagspiel KD, Leung DA, Dulai HS, Angle JF, Spinosa DJ, Matsumoto AH, et al. MR angiography at 1.5T in patients after implantation of platinum stents: comparison with conventional stent designs. AJR Am J Roentgenol 2005;184:288–94.

    PubMed  Google Scholar 

  82. Bhatti AA, Chugtai A, Haslam P, Talbot D, Rix DA, Soomro NA. Prospective study comparing three-dimensional computed tomography and magnetic resonance imaging for evaluating the renal vascular anatomy in potential living renal donors. BJU Int 2005;96:1105–8.

    Article  PubMed  Google Scholar 

  83. Horton KM, Fishman EK. Multi-detector row CT of mesenteric ischemia: can it be done? Radiographics 2001;21:1463–73.

    PubMed  CAS  Google Scholar 

  84. Laghi A, Iannaccone R, Catalano C, Passariello R. Multislice spiral computed tomography of mesenteric arteries. Lancet 2001; 358:638–9.

    Article  PubMed  CAS  Google Scholar 

  85. Meaney JF, Rince MR, Nostrant TT, Stanley JC. Gadolinium- enhanced MR angiography of visceral arteries in patients with suspected chronic mesenteric ischemia. J Magn Reson Imaging 1997;71:171–6.

    Article  Google Scholar 

  86. Baden JG, Racy DJ, Grist TM. Contrast-enhanced three-dimensional magnetic resonance angiography of the mesenteric vasculature. J Magn Reson Imaging 1999; 10:369–75.

    Article  PubMed  CAS  Google Scholar 

  87. Carlos RC, Stanley JC, Stafford-Johnson D, Rince MR. Interobserver variability in the evaluation of chronic mesenteric ischemia with gadolinium-enhanced MR angiography. Acad Radiol 2001; 8:879–87.

    Article  PubMed  CAS  Google Scholar 

  88. Shih MCP, Hagspiel KD. Pictorial essay: CTA and MRA in mesenteric ischemia: part I: role in diagnosis and differential diagnosis. Am J Roentgenol 2006 (in press).

  89. Hagspiel KD, Shih MCP, Leung DA, Angle JF, Harthun NL, Cherry K. Pictorial essay: CTA and MRA in mesenteric ischemia: part II: surgical and endovascular treatment: normal findings and appearance of complications. Am J Roentgenol 2006 (in press).

  90. Niendorf HP, Haustein J, Cornelius L, Alhassan A, Clauss W. Safety of gadolinium-DTPA: extended clinical experience. Magn Reson Med 1991;22:222–8.

    Article  PubMed  CAS  Google Scholar 

  91. Schnall MD, Holland GA, Baum RA, Cope C, Schiebler ML, Carpenter JP. MR angiography of the peripheral vasculature. Radiographics 1993;13:920–30.

    PubMed  CAS  Google Scholar 

  92. Rajagopalan S, Rince M. Magnetic resonance angiographic techniques for the diagnosis of arterial disease. In: Rajagopalan S, Stanley JC, Olin JW, editors. Peripheral vascular disease. Philadelphia: W.B. Saunders Co.; 2002. p. 501–12.

    Google Scholar 

  93. Owen RS, Carpenter JP, Baum RA, Perloff LJ, Cope C. Magnetic resonance imaging of angiographically occult runoff vessels in peripheral arterial occlusive disease. N Engl J Med 1992;326:1577–81.

    PubMed  CAS  Google Scholar 

  94. Rofsky NM, Adelman MA. MR angiography in the evaluation of atherosclerotic peripheral vascular disease. Radiology 2000;214:325–38.

    PubMed  CAS  Google Scholar 

  95. Baum RA, Rutter CM, Sunshine JH, Bleba JS, Bleba J, Carpenter JP, et al. Multi-center trial to evaluate vascular magnetic resonance angiography of the lower extremity. JAMA 1995;274:875–80.

    Article  PubMed  CAS  Google Scholar 

  96. Foo TK, Saranathan M, Rince MR, Chenevert TL. Automated detection of bolus arrival and initiation of data acquisition in fast, three-dimensional MR angiography. Radiology 1997;203:275–80.

    PubMed  CAS  Google Scholar 

  97. Goyen M, Lauenstein TC, Herborn CU, Debatin JF, Bosk S, Ruehm SG. 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiography. J Magn Reson Imaging 2001;14:602–7.

    Article  PubMed  CAS  Google Scholar 

  98. Hany TF, Carroll TJ, Omary RA, Esparza-Coss E, Korosec FR, Mistretta CA, et al. Aorta and runoff vessels: single-injection MR angiography with automated table movements compared with multiinjection time-resolved MR angiography—initial results. Radiology 2001;221:266–72.

    Article  PubMed  CAS  Google Scholar 

  99. Ho KY, Leiner T, de Haan MW, Kessels AG, Kitslaar PJ, van Engelshoven JM. Peripheral vascular tree stenoses: evaluation with moving-bed infusion-tracking MR angiography. Radiology 1998;206:683–92.

    PubMed  CAS  Google Scholar 

  100. Ho VB, Choyke PL, Foo TK, Hood MN, Miller DL, Czum JM, et al. Automated bolus chase peripheral angiography: initial practical experiences and future directions of this work-in- progress. J Magn Reson Imaging 1999;10:376–88.

    Article  PubMed  CAS  Google Scholar 

  101. Ho KY, Leiner T, van Engelshoven JM. MR angiography of run-off vessels. Eur Radiol 1999;9:1285–9.

    Article  PubMed  CAS  Google Scholar 

  102. McCauley TR, Monib A, Dickey KW, Clemett J, Meier GH, Egglin TK, et al. Peripheral vascular occlusive disease: accuracy and reliability of time-of-flight MR angiography. Radiology 1994;192:351–7.

    PubMed  CAS  Google Scholar 

  103. Meaney JF, Ridgeway JP, Chakraverty S, et al. Stepping-table gadolinium-enhanced digital subtraction MR angiography of the aorta and lower extremity arteries: preliminary experience. Radiology 1999;211:59–67.

    PubMed  CAS  Google Scholar 

  104. Lapeyre M, Kobeiter H, Desgranges P, Rahmouni A, Becquemin JP, Luciani A. Assessment of critical limb ischemia in patients with diabetes: comparison of MR angiography and digital subtraction angiography. AJR Am J Roentgenol 2005;185:1641–50.

    Article  PubMed  Google Scholar 

  105. Nelemans PJ, Leiner T, de Vet HC, van Engelshoven JM. Peripheral arterial disease: meta-analysis of the diagnostic performance of MR angiography. Radiology 2000;217:105–14.

    PubMed  CAS  Google Scholar 

  106. Koelemay MJW, Lijmer JG, Stoker J, Legemate DA, Bossuyt PMM. Magnetic resonance angiography for the evaluation of lower extremity arterial disease. JAMA 2001;285:1338–45.

    Article  PubMed  CAS  Google Scholar 

  107. Bezooijen R, van den Bosch HCM, Tielbeek AV, Thelissen GR, Visser K, Hunink MG, et al. Peripheral arterial disease: sensitivity-encoded multiposition MR angiography compared with intraarterial angiography and conventional multiposition MR angiography. Radiology 2004;231:263–71.

    Article  PubMed  Google Scholar 

  108. Hagspiel KD, Yao L, Burkholder B, Bissonette EA, Harthun N. Peripheral Vascular disease: comparison of multistation MR angiography using integrated parallel acquisition technique (iPAT) with conventional technique utilizing a dedicated phased array coil system. J Vasc Interv Radiol 2006; 17:263–9.

    Article  PubMed  Google Scholar 

  109. Wang Y, Lee HM, Khilnani NM, Trost DW, Jagust MB, Winchester PA, et al. Bolus-chase MR digital subtraction angiography in the lower extremity. Radiology 1998;207:263–9.

    PubMed  CAS  Google Scholar 

  110. Wang Y, Winchester PA, Khilnani NM, Lee HM, Watts R, Trost DW, et al. Contrast-enhanced peripheral MR angiography from the abdominal aorta to the pedal arteries: combined dynamic two-dimensional and bolus-chase three-dimensional acquisitions. Invest Radiol 2001;36:170–7.

    Article  PubMed  CAS  Google Scholar 

  111. Fain SB, Riederer SJ, Huston J 3rd, King BF. Embedded MR fluoroscopy: high temporal resolution real-time imaging during high spatial resolution 3D MRA acquisitions. Magn Reson Med 2001;46:690–8.

    Article  PubMed  CAS  Google Scholar 

  112. Carroll TJ, Korosec FR, Swan JS, Hany TF, Grist TM, Mistretta CA. The effect of injection rate on time resolved contrast-enhanced peripheral MRA. J Magn Reson Imaging 2001;14:401–10.

    Article  PubMed  CAS  Google Scholar 

  113. Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC. Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology 2001;221:146–58.

    Article  PubMed  CAS  Google Scholar 

  114. Willmann JK, Baumert B, Schertler T, Wildermuth S, Pfammatter T, Verdun FR, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 2005;236:1083–93.

    Article  PubMed  Google Scholar 

  115. Ouwendijk R, de Vries M, Pattynama PM, van Sambeek MR, de Haan MW, Stijnen T, et al. Imaging peripheral arterial disease: a randomized controlled trial comparing contrast-enhanced MR angiography and multi-detector row CT angiography. Radiology 2005;236:1094–103.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus D. Hagspiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabul, H.K., Hagspiel, K.D. Cross-sectional vascular imaging with CT and MR angiography. J Nucl Cardiol 13, 385–401 (2006). https://doi.org/10.1016/j.nuclcard.2006.03.013

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.03.013

Keywords

Navigation