Skip to main content

Advertisement

Log in

Impact of photon energy recovery on the assessment of left ventricular volume using myocardial perfusion SPECT

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Photon energy recovery (PER) is a spectral deconvolution technique validated for scatter removal in patients and phantom studies. The purpose of this study was to examine the impact of PER on left ventricular volume measurement based on myocardial perfusion single photon emission computed tomography (SPECT).

Methods and Results

SPECT acquisitions were performed by use of a static cardiac phantom and in 25 patients after a rest injection of technetium 99m sestamibi by use of multiple energy windows (126–136, 137–144, and 145–154 keV). Data were successively reconstructed with and without PER, by use of iterative reconstruction and post-processing filtering (Butterworth filter; order, 5; cutoff, 0.30 cycles/pixel). Image contrast was evaluated in reconstructed data, and volumes were calculated by use of QGS. PER increased reconstructed image contrast from 62% ± 2.7% to 84.3% ± 5.7% in the phantom studies (P < .0001) and from 49% ± 2% to 73% ± 2% in patients (P < .0001). Although it remained underestimated (P < .0001), phantom volume was higher after PER correction compared with uncorrected data (50.9 ± 0.8 mL vs 44.6 ± 1 mL, P < .0001). The error in volume measurement was decreased by PER correction (16.6% ± 1.3% vs 27% ± 1.7% [uncorrected data], P < .0001). In patients, left ventricular volume increased from 83 ± 10 mL to 91 ± 10 mL (P < .0001), and the PER-induced volume increase was correlated with the image contrast increase (r = 0.61, P = .001). Finally, the percentage of volume increase was higher in patients with small left ventricular volumes.

Conclusions

PER has a significant impact on image contrast and left ventricular volume measurement by use of perfusion SPECT. PER improves the accuracy of phantom volume assessment. In patients, volume increase is correlated to image contrast increase and is higher in those with small ventricles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DePuey E, Nichols K, Dobrinsky C. Left ventricular ejection fraction assessed from gated technetium-99m-sestamibi SPECT. J Nucl Med 1993;34:1871–6.

    PubMed  CAS  Google Scholar 

  2. Germano G, Kiat H, Kavanagh P, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138–47.

    PubMed  CAS  Google Scholar 

  3. Williams KA, Taillon LA. Left ventricular function in patients with coronary artery disease assessed by gated tomographic myocardial perfusion images: comparison with assessment by contrast ventriculography and first-pass radionuclide angiography. J Am Coll Cardiol 1996;27:173–81.

    Article  PubMed  CAS  Google Scholar 

  4. Gilland DR, Tsui BM, McCartney WH, Perry JR, Berg J. Determination of the optimum filter function for SPECT imaging. J Nucl Med 1988;29:643–50.

    PubMed  CAS  Google Scholar 

  5. Vera P, Manrique A, Pontvianne V, et al. Thallium-gated SPECT in patients with major myocardial infarction: effect of filtering and zooming in comparison with equilibrium radionuclide imaging and left ventriculography. J Nucl Med 1999;40:513–21.

    PubMed  CAS  Google Scholar 

  6. Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 1994;21:675–94.

    Article  PubMed  CAS  Google Scholar 

  7. Manrique A, Hitzel A, Gardin I, Dacher JN, Véra P. Impact of Wiener filter in determining left ventricular volume and ejection fraction using thallium-201 gated SPECT. Nuc Med Commun 2003;24:907–14.

    Article  CAS  Google Scholar 

  8. Hannequin PP, Mas JF. Photon energy recovery: a method to improve the effective energy resolution of gamma cameras. J Nucl Med 1998;39:555–62.

    PubMed  CAS  Google Scholar 

  9. Hannequin P, Mas J, Germano G. Photon energy recovery for crosstalk correction in simultaneous 99mTc/201Tl imaging. J Nucl Med 2000;41:728–36.

    PubMed  CAS  Google Scholar 

  10. Hannequin P, Weinmann P, Mas J, Vinot S. Preliminary clinical results of photon energy recovery in simultaneous rest Tl-201/ stress Tc-99m sestamibi myocardial SPECT. J Nucl Cardiol 2001;8:144–51.

    Article  PubMed  CAS  Google Scholar 

  11. Weinmann P, Faraggi M, Moretti JL, Hannequin P. Clinical validation of simultaneous dual-isotope myocardial scintigraphy. Eur J Nucl Med Mol Imaging 2003;30:25–31.

    Article  PubMed  CAS  Google Scholar 

  12. Hannequin P, Vinot S, Mas J. Photon energy recovery (PER) autocalibration for Tc-99m and Tl-201 scatter removal [abstract]. J Nucl Med 1999;40(Suppl):304P.

    Google Scholar 

  13. Vera P, Koning R, Cribier A, Manrique A. Comparison of two three-dimensional gated SPECT methods with thallium in patients with large myocardial infarction. J Nucl Cardiol 2000;7:312–9.

    Article  PubMed  CAS  Google Scholar 

  14. Manrique A, Koning R, Cribier A, Vera P. Effect of temporal sampling on evaluation of left ventricular ejection fraction by means of thallium-201 gated SPET: comparison of 16- and 8-interval gating, with reference to equilibrium radionuclide angiography. Eur J Nucl Med 2000;27:694–9.

    Article  PubMed  CAS  Google Scholar 

  15. Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476–88.

    PubMed  CAS  Google Scholar 

  16. Sharir T, Germano G, Waechter PB, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II: Validation and diagnostic yield. J Nucl Med 2000;41:720–7.

    PubMed  CAS  Google Scholar 

  17. Yoshioka J, Hasegawa S, Yamaguchi H, et al. Left ventricular volumes and ejection fraction calculated from quantitative electrocardiographicgated 99mTc-tetrofosmin myocardial SPECT. J Nucl Med 1999;40:1693–8.

    PubMed  CAS  Google Scholar 

  18. Faber TL, Vansant JP, Pettigrew RI, et al. Evaluation of left ventricular endocardial volumes and ejection fractions computed from gated perfusion SPECT with magnetic resonance imaging: comparison of two methods. J Nucl Cardiol 2001;8:645–51.

    Article  PubMed  CAS  Google Scholar 

  19. Tadamura E, Kudoh T, Motooka M, et al. Assessment of regional and global left ventricular function by reinjection T1-201 and rest Tc-99m sestamibi ECG-gated SPECT: comparison with threedimensional magnetic resonance imaging. J Am Coll Cardiol 1999;33:991–7.

    Article  PubMed  CAS  Google Scholar 

  20. Vaduganathan P, He ZX, Vick GW III, Mahmarian JJ, Verani MS.Evaluation of left ventricular wall motion, volumes, and ejection fraction by gated myocardial tomography with technetium 99m- labeled tetrofosmin: a comparison with cine magnetic resonance imaging. J Nucl Cardiol 1999;6:3–10.

    Article  PubMed  CAS  Google Scholar 

  21. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ. Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 2002;223:789–97.

    Article  PubMed  Google Scholar 

  22. De Bondt P, Van de Wiele C, De Sutter J, et al. Age- and gender-specific differences in left ventricular cardiac function and volumes determined by gated SPET. Eur J Nucl Med 2001;28:620–4.

    Article  PubMed  Google Scholar 

  23. Rozanski A, Nichols K, Yao SS, et al. Development and application of normal limits for left ventricular ejection fraction and volume measurements from 99mTc-sestamibi myocardial perfusion gates SPECT. J Nucl Med 2000;41:1445–50.

    PubMed  CAS  Google Scholar 

  24. Nakajima K, Taki J, Higuchi T, et al. Gated SPET quantification of small hearts: mathematical simulation and clinical application. Eur J Nucl Med 2000;27:1372–9.

    Article  PubMed  CAS  Google Scholar 

  25. Vallejo E, Dione DP, Bruni WL, et al. Reproducibility and accuracy of gated SPECT for determination of left ventricular volumes and ejection fraction: experimental validation using MRI. J Nucl Med 2000;41:874–86.

    PubMed  CAS  Google Scholar 

  26. Feng B, Sitek A, Gullberg GT. Calculation of the LVEF without edge detection: application to smaller hearts. J Nucl Med 2002;43:786–94.

    PubMed  Google Scholar 

  27. Kadrmas DJ, DiBella EV, Huesman RH, Gullberg GT. Analytical propagation of errors in dynamic SPECT: estimators, degrading factors, bias and noise. Phys Med Biol 1999;44:1997–2014.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Manrique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manrique, A., Hitzel, A. & Véra, P. Impact of photon energy recovery on the assessment of left ventricular volume using myocardial perfusion SPECT. J Nucl Cardiol 11, 312–317 (2004). https://doi.org/10.1016/j.nuclcard.2004.03.001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2004.03.001

Key Words

Navigation