Skip to main content
Log in

Scatter correction in scintigraphy: the state of the art

  • Review Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

In scintigraphy, the detection of scattered photons degrades both visual image analysis and quantitative accuracy. Many methods have been proposed and are still under investigation to cope with scattered photons. The main features of the problem of scattering in radionuclide imaging are presented first, to provide a sound foundation for a critical review of the existing scatter correction techniques. These are described using a classification relating to their aims and principles. Their theoretical potentials are analysed, as well as the difficulties of their practical implementation. Finally, the problems of their evaluation and comparison are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Vries DJ, Moore SC, Zimmerman RE, Mueller SP, Friedland B, Lanza RC. Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. IEEE Trans Med Imaging 1990;9: 430–438.

    Google Scholar 

  2. Ljungberg M, Strand SE. A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Prog Biomed 1989;29: 257–272.

    Google Scholar 

  3. Rosenthal MS, Henry LJ. Evaluation and comparison of two scatter correction techniques. J Nucl Med 1990;31: 878.

    Google Scholar 

  4. Gagnon D, Pouliot N, Laperriere L. Statistical and physical content of low-energy photons in holospectral imaging. IEEE Trans Med Imaging 1991;10: 284–289.

    Google Scholar 

  5. Munley MT, Floyd CE, Tourassi GD, Bowsher JE, Coleman RE. Out-of-plane photons in SPECT. IEEE Trans Nucl Sci 1991;38: 776–779.

    Google Scholar 

  6. Gagnon D, Laperriere L, Pouliot N, de Vries DJ, Moore SC. Monte Carlo analysis of camera-induced spectral contamination for different primary energies. Phys Med Biol 1992;37: 1725–1739.

    Google Scholar 

  7. Beck JW, Jaszczak RJ, Coleman RE, Starmer CF, Nolte LW. Analysis of SPECT including scatter and attenuation using sophisticated Monte-Carlo modeling methods. IEEE Trans Nucl Sci 1982;29: 506–511.

    Google Scholar 

  8. Floyd CE, Jaszczak RJ, Harris CC, Coleman RE. Energy and spatial distribution of multiple order Compton scatter in SPECT: a Monte Carlo investigation. Phys Med Biol 1984;29: 1217–1230.

    Google Scholar 

  9. Lowry CA, Cooper MJ. The problem of Compton scattering in emission tomography: a measurement of its spatial distribution. Phys Med Biol 1987;32: 1187–1191.

    Google Scholar 

  10. Coleman M, King MA, Glick SJ, Knesaurek K, Penney BC. Investigation of the stationarity of the modulation transfer function and the scatter fraction in conjugate view SPECT restoration filtering. IEEE Trans Nucl Sci 1989;36 969–972.

    Google Scholar 

  11. Frey EC, Tsui BMW. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 1990;37: 1308–1315.

    Google Scholar 

  12. Zasadny KR, Koral KF, Floyd CE Jr, Jaszczak RJ. Measurement of Compton scattering in phantoms by germanium detector. IEEE Trans Nucl Sci 1990;37: 642–646.

    Google Scholar 

  13. Koral KF, Wang X, Zasadny KR, Clinthorne NH, Rogers WL, Floyd CE, Jaszczak RJ. Testing of local gamma-ray scatter fractions determined by spectral fitting. Phys Med Biol 1991;36: 177–190.

    Google Scholar 

  14. Floyd CE, Jaszczak RJ, Coleman RE. Scatter detection in SPECT imaging: dependence on source depth, energy, and energy window. Phys Med Biol 1988;33: 1075–1081.

    Google Scholar 

  15. Beck RN, Schuh MW, Cohen TD, Lembares N. Effects of scattered radiation on scintillation detector response. In: IAEA, ed. Medical radioisotope scintigraphy. Vienna: IAEA; 1969: 595–616.

    Google Scholar 

  16. Rollo FD, Schulz AG. Effect of pulse-height selection on lesion detection performance. J Nucl Med 1971;12: 690–696.

    Google Scholar 

  17. Ehrhardt JC, Oberley LW. Effects of spectral changes on scanning. Radiology 1972;104: 207–208.

    Google Scholar 

  18. Oberley LW, Ehrhardt JC, Lensink SC. The variable baseline scanner. Phys Med Biol 1972;17: 630–637.

    Google Scholar 

  19. Sanders TP, Sanders TD, Kuhl DE. Optimizing the window of an Anger camera for 99mTc. J Nucl Med 1972;12: 703–706.

    Google Scholar 

  20. Atkins FB, Beck RN. Dependence of optimum baseline setting on scatter fraction and detector response function. In: IAEA, ed. Medical radionuclide imaging. Vienna: IAEA; 1977: 101–118.

    Google Scholar 

  21. Collier BD, Palmer DW, Knobel J, Isitman AT, Hellman RS, Zielonka JS. Gamma camera energy for Tc99m bone scintigraphy: effect of asymmetry on contrast resolution. Radiology 1984:151 495–497.

    Google Scholar 

  22. Graham LS, La Fontaine RL, Stein MA. Effects of asymmetric photopeak windows on flood field uniformity and spatial resolution of scintillation cameras. J Nucl Med 1986;27: 706–713.

    Google Scholar 

  23. La Fontaine R, Stein MA, Graham LS, Winter J. Cold lesions: enhanced contrast using asymmetric photopeak windows. Radiology 1986;160: 255–260.

    Google Scholar 

  24. Rogers WL, Clinthorne NH, Stamos J, Koral KF, Mayans R, Knoll GF, Juni J, Keyes JW, Harkness BA. Performance evaluation of SPRINT, a single photon ring tomograph for brain imaging. J Nucl Med 1984;25: 1013–1018.

    Google Scholar 

  25. Koral KF, Clinthorne NH, Rogers WL. Improving emission computed tomography quantification by Compton-scatter rejection through offset windows. Nucl Instrum Methods Phys Res 1986;A242: 610–614.

    Google Scholar 

  26. Beck RN, Zimmer LT, Charleston DB, Hoffer PB. Aspects of imaging and counting in nuclear medicine using scintillation and semi conductor detectors. IEEE Trans Nucl Sci 1972;19: 173–178.

    Google Scholar 

  27. King MA, Coleman M, Penney BC, Glick SJ. Activity quantitation in SPECT: a study of prereconstruction Metz filtering and use of the scatter degradation factor. Med Phys 1991;18: 184–189.

    Google Scholar 

  28. Jaszczak RJ, Coleman RE, Whitehead FR. Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography. IEEE Trans Nucl Sci 1981;28 69–80.

    Google Scholar 

  29. King MA, Penney BC, Glick SJ. An image-dependent Metz filter for nuclear medicine images. J Nucl Med 1988;29: 1980–1989.

    Google Scholar 

  30. Jaszczak RJ, Floyd CE, Coleman RE. Scatter compensation techniques for SPECT. IEEE Trans Nucl Sci 1985;32: 786–793.

    Google Scholar 

  31. Szabo Z, Links JM, Seki C, Rhine J, Wagner HN. Scatter, spatial resolution, and quantitative recovery in high resolution SPECT. J Comput Assist Tomogr 1992;16: 461–467.

    Google Scholar 

  32. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25: 893–900.

    Google Scholar 

  33. Gilland DR, Jaszczak RJ, Greer KL, Coleman RE. Quantitative SPECT reconstruction of iodine-123 data. J Nucl Med 1991;32: 527–533.

    Google Scholar 

  34. Harris CC, Greer KL, Jaszczak RJ, Floyd CE, Fearnow EC, Coleman RE. Tc-99m attenuation coefficients in water-filled phantoms determined with gamma cameras. Med Phys 1984;11: 681–685.

    Google Scholar 

  35. Wit RK, Siegel JA. Absolute quantification of radioactivity using the buildup factor. Med Phys 1984;11: 189–192.

    Google Scholar 

  36. Almquist H, Palmer J, Ljungberg M, Wollmer P, Strand SE, Jonson B. Quantitative SPECT by attenuation correction of the projection set using transmission data: evaluation of a method. Eur J Nucl Med 1990;16: 587–594.

    Google Scholar 

  37. Siegel JA, Wu RK, Maurer AH. The buildup factor: effect of scatter on absolute volume determination. J Nucl Med 1985;26: 390–394.

    Google Scholar 

  38. Ljungberg M, Strand SE. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of buildup functions. J Nucl Med 1990;31: 493–500.

    Google Scholar 

  39. Siegel JA, Maurer AH, Wu RK, Denenberg BS, Gash AK, Carabello BA, Spann JF, Malmud LS. Absolute left ventricular volume by an iterative build-up factor analysis of gated radionuclide study. Radiology 1984;151: 477–481.

    Google Scholar 

  40. Ljungberg M, Strand SE. Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med 1991;32: 1278–1284.

    Google Scholar 

  41. Egbert SD, May RS. An integral-transport method for Compton-scatter correction in emission computed tomography. IEEE Trans Nucl Sci 1980;27: 543–548.

    Google Scholar 

  42. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;25: 638–643.

    Google Scholar 

  43. Floyd CE, Jaszczak RJ, Coleman RE. Inverse Monte Carlo: a unified reconstruction algorithm for SPECT. IEEE Trans Nucl Sci 1985;32: 779–785.

    Google Scholar 

  44. Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J Nucl Med 1986;27: 1577–1585.

    Google Scholar 

  45. Bowsher JE, Floyd CE. Treatment of Compton scattering in maximum-likelihood, expectation-maximization reconstructions of SPECT images. JNucl Med 1991;32: 1285–1291.

    Google Scholar 

  46. Frey EC, Ju ZW, Tsui BMW. A fast projector-backprojector pair modeling the asymmetric, spatially varying scatter response function for scatter compensation in SPECT imaging. IEEE Trans Nucl Sci 1993;40: 1192–1197.

    Google Scholar 

  47. Frey EC, Tsui BMW. A practical method for incorporating scatter in a projector-backprojector for accurate scatter compensation in SPECT. IEEE Trans Nucl Sci 1993;40: 1107–1116.

    Google Scholar 

  48. Frey EC, Tsui BMW. Spatial properties of the scatter response function in SPECT. IEEE Trans Nucl Sci 1991;38: 789–794.

    Google Scholar 

  49. Beck RN, Zimmer LT, Charleston DB, Harper PV, Hoffer PB. Advances in fundamental aspects of imaging systems and techniques. In: IAEA, ed. Medical radioisotope scintigraphy. Vienna: IAEA;1972: 29–30.

    Google Scholar 

  50. Halama JR, Henkin RE, Friend LE. Gamma camera radionuclide images: improved contrast with energy-weighted acquisition. Radiology 1988;169: 533–538.

    Google Scholar 

  51. DeVito RP, Hamill JJ. Determination of weighting functions for energy-weighted acquisition. J Nucl Med 1991;32: 343–349.

    Google Scholar 

  52. DeVito RP, Hamill JJ, Treffert JD, Stoub EW. Energy-weighted acquisition of scintigraphic images using finite spatial filters. J Nucl Med 1989;30: 2029–2035.

    Google Scholar 

  53. Hamill JJ, DeVito RP. Scatter reduction with energy-weighted acquisition. IEEE Trans Nucl Sci 1989;36: 1334–1339.

    Google Scholar 

  54. Floyd JL, Mann RB, Shaw A. Changes in quantitative SPECT thallium-201 results associated with the use of energy-weighted acquisition. J Nucl Med 1991;32: 805–807.

    Google Scholar 

  55. Jaszczak RJ, Hoffman DC, DeVito RP. Variance propagation for SPECT with energy-weighted acquisition. IEEE Trans Nucl Sci 1991;38: 739–747.

    Google Scholar 

  56. King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992;33: 605–612.

    Google Scholar 

  57. Hademenos GJ, Ljungberg M, King MA, Glick SJ. A Monte Carlo investigation of the dual photopeak window scatter correction method. IEEE Trans Nucl Sci 1993;40 179–185.

    Google Scholar 

  58. Pretorius PH, van Rensburg AJ, van Aswegen A, Utter MG, Serfontein DE, Herbst CP. The channel ratio method of scatter correction for radionuclide image quantitation. J Nucl Med 1993;34 330–335.

    Google Scholar 

  59. Logan KW, McFarland WD. Single photon scatter compensation by photopeak energy distribution analysis. IEEE Trans Med Imaging 1992;11: 161–164.

    Google Scholar 

  60. Bloch P, Sanders T. Reduction of the effects of scattered radiation on a sodium iodide imaging system. J Nucl Med 1973;14: 67–72.

    Google Scholar 

  61. Liang Z,Turkington TG, Gilland DR, Jaszczak RJ, Coleman RE. Simultaneous compensation for attenuation, scatter and detector response for SPECT reconstruction in three dimensions. Phys Med Biol 1992;37: 587–603.

    Google Scholar 

  62. Atkins FB, Beck RN. Effect of scatter subtraction on image contrast. J Nucl Med 1975;16: 102–104.

    Google Scholar 

  63. Floyd CE, Jaszczak RJ, Harris CC, Greer KL, Coleman RE. Monte Carlo evaluation of Compton scatter subtraction in single photon emission computed tomography. Med Phys 1985;12: 776–778.

    Google Scholar 

  64. Ljungberg M, Msaki P, Strand SE. Comparison of dual-window and convolution scatter correction techniques using the Monte Carlo method. Phys Med Biol 1990;35: 1099–1110.

    Google Scholar 

  65. Meikle SR, Hutton BF, Bailey DL, Fulton RR, Schindhelm K. SPECT scatter correction in non-homogeneous media. In: Colchester ACF, Hawkes DJ, eds. Information processing in medical imaging. Berlin Heidelberg New York: Springer; 1991: 34–44.

    Google Scholar 

  66. Todd-Pokropek AE, Clarke G, Marsh R. Preprocessing of SPECT data as a precursor for attenuation correction. In: Deconinck F, ed. Information processing in medical imaging. Brussels: Martinus Nijhoff; 1983: 130–150.

    Google Scholar 

  67. Gilardi MC, Bettinardi V, Todd-Pokropek A, Milanesi L, Fazio F. Assessment and comparison of three scatter correction techniques in single photon emission computed tomography. J Nucl Med 1988;29: 1971–1979.

    Google Scholar 

  68. Singh M, Horne C. Use of germanium detector to optimize scatter correction in SPECT. J Nucl Med 1987;28: 1853–1860.

    Google Scholar 

  69. Green AJ, Dewhurst SE, Begent RHJ, Bagshawe KD, Riggs SJ. Accurate quantification of '3'I distribution by gamma camera imaging. Eur J Nucl Med 1990;16: 361–365.

    Google Scholar 

  70. Yanch JC, Flower MA, Webb S. Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography. Med Phys 1990;17: 1011–1022.

    Google Scholar 

  71. Koral KF, Swailem FM, Buchbinder S, Clinthorne NH, Rogers WL, Tsui BMW. SPECT dual-energy-window Compton correction: scatter multiplier required for quantification. J Nucl Med 1990;31: 90–98.

    Google Scholar 

  72. Gilland DR, Jaszczak RJ, Turkington TG, Greer KL, Coleman RE. Quantitative SPECT imaging with indium 111. IEEE Trans Nucl Sci 1991;38: 761–766.

    Google Scholar 

  73. Koral KF, Buchbinder S, Clinthorne NH, Rogers WL, Swailem FM, Tsui BMW. Influence of region of interest selection on the scatter multiplier required for quantification in dual-window Compton correction. J Nucl Med 1991;32: 186.

    Google Scholar 

  74. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scattered correction in single photon emission CT. IEEE Trans Med Imaging 1991;10: 408–412.

    Google Scholar 

  75. Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 1984;25: 490–494.

    Google Scholar 

  76. Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Deconvolution of Compton scatter in SPECT. J Nucl Med 1985;26: 403–408.

    Google Scholar 

  77. Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPECT using point scatter distribution functions. J Nucl Med 1987;28: 1861–1869.

    Google Scholar 

  78. Msaki P, Axelsson B, Larsson SA. Some physical factors influencing the accuracy of convolution scatter correction in SPECT. Phys Med Biol 1989;34: 283–298.

    Google Scholar 

  79. Mukai T, Links JM, Douglass KH, Wagner HN. Scatter correction in SPECT using non-uniform attenuation data. Phys Med Biol 1988;33: 1129–1140.

    Google Scholar 

  80. Msaki P, Erlandsson K, Svensson L, Nolstedt L. The convolution scatter subtraction hypothesis and its validity domain in radioisotope imaging. Phys Med Biol 1993;38: 1359–1370.

    Google Scholar 

  81. Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989;10 83–97.

    Google Scholar 

  82. Todd-Pokropek A. Non-stationary deconvolution using a multi-resolution stack. In: de Graaf CN, Viergever MA, eds. Information processing in medical imaging. New York: Plenum; 1988: 277–290.

    Google Scholar 

  83. Ljungberg M, Strand SE. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 1990;31: 1560–1567.

    Google Scholar 

  84. Ogawa K, Nishizaki N. Accurate scatter compensation using neural networks in radionuclide imaging. IEEE Trans Nucl Sci 1993;40: 1020–1025.

    Google Scholar 

  85. Waggett DJ, Wilson BC. Improvement of scanner performance by subtraction of Compton scattering using multiple energy windows. Br J Radiol 1978;51: 1004–1010.

    Google Scholar 

  86. Koral KF, Wang X, Rogers WL, Clinthorne NH, Wang X. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988;29: 195–202.

    Google Scholar 

  87. East LV, Phillips RL, Strong AR. A fresh approach to NaI scintillation detector spectrum analysis. Nucl Instrum Methods 1982;193: 147–155.

    Google Scholar 

  88. Wang X, Koral KF, Clinthorne NH, Rogers WL, Floyd CE Jr, Jaszczak RJ. Effect of noise, order and range in fitting the photopeak region of local, Anger-camera energy spectra. Nucl Instrum Methods Phys Res 1990;A299: 548–553.

    Google Scholar 

  89. Wang X, Koral KF. A regularized deconvolution-fitting method for Compton-scatter correction in SPECT. IEEE Trans Med Imaging 1992;11: 351–360.

    Google Scholar 

  90. Maor D, Berlad G, Chrem Y, Voil A, Todd-Pokropek A. Klein-Nishina based energy factors for Compton free imaging (CFI) [abstract]. J Nucl Med 1991;32: 1000.

    Google Scholar 

  91. Cavailloles F, Morvan D, Boudet F, Bazin JP, Di Paola R. Factor analysis of dynamic structures as an aid for vesicoureteral reflux diagnosis. Contrib Nephrol 1987;56: 238–242.

    Google Scholar 

  92. Todd-Pokropek A, Gagnon D. Scatter correction in tomography. In: MacCuaig N, Holt R, eds. Tomography and scatter imaging. London: IOP Short meetings; 1988: 41–52.

    Google Scholar 

  93. Gagnon D, Todd-Pokropek A, Arsenault A, Dupras G. Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imaging 1989;8: 245–250.

    Google Scholar 

  94. Barber DC. The use of principal components in the quantitative analysis of gamma camera dynamic studies. Phys Med Biol 1980;25: 283–292.

    Google Scholar 

  95. Di Paola R, Bazin JP, Aubry F, Aurengo A, Cavailloles F, Herry JY, Kahn E. Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sci 1982;29: 1310–1321.

    Google Scholar 

  96. Hannequin P, Liehn JC, Valeyre J. Correction de la diffusion Compton par analyse factorielle des structures dynamiques. J Med Nucl Biophys 1988;12: 460.

    Google Scholar 

  97. Mas J, Hannequin P, Ben Younes R, Bellaton B, Bidet R. Scatter correction in planar imaging and SPECT by constrained factor analysis of dynamic structures (FADS). Phys Med Biol 1990;35: 1451–1465.

    Google Scholar 

  98. Mas J, Hannequin P, Ben Younes R, Bellaton B, Bidet R. Correction de la diffusion Compton en imagerie isotopique par analyse factorielle sous contraintes. Innov Tech Biol Med 1990;11: 641–655.

    Google Scholar 

  99. Buvat I. Correction de la diffusion en imagerie scintigraphique. Thèse de doctorat en Physique. Université de Paris XI, 1992.

  100. Buvat I, Benah H, Frouin F, Bazin JP, Di Paola R. Target apex-seeking in factor analysis of medical image sequences. Phys Med Biol 1993;38: 123–138.

    Google Scholar 

  101. Ljungberg M, King MA, Hademenos GJ, Strand SE. Comparison of four scatter correction methods using Monte Carlo simulated source distributions. J Nucl Med 1994;35: 143–151.

    Google Scholar 

  102. Rosenthal MS, Henry LJ. Scattering in uniform media. Phys Med Biol 1990;35: 265–274.

    Google Scholar 

  103. Yanch JC, Dobrzeniecki AB, Ramanathan C, Behrman R. Physically realistic Monte Carlo simulation of source, collimator and tomographic data acquisition for emission computed tomography. Phys Med Biol 1992;37: 853–870.

    Google Scholar 

  104. Yanch JC, Irvine AT, Webb S, Flower MA. Deconvolution of emission tomographic data: a clinical evaluation. Br J Radiol 1988;61: 221–225.

    Google Scholar 

  105. Rao MG. Bone imaging with energy-weighted acquisition. J Nucl Med 1993;34: 997–999.

    Google Scholar 

  106. Bonnin F, Buvat I, Benali H, Di Paola R. A comparative clinical study of scatter correction methods for scintigraphic images. Eur J Nucl Med 1994;21: 388–393.

    Google Scholar 

  107. Mas J, Ben Younes R, Bidet R. Improvement of quantification in SPELT studies by scatter and attenuation compensation. Eur J Nucl Med 1989;15: 351–356.

    Google Scholar 

  108. Ben Younes R, Mas J, Pousse A, Hannequin P, Bidet R. Introducing simultaneous spatial resolution and attenuation correction after scatter removal in SPELT imaging. Nucl Med Commun 1991;12: 1031–1043.

    Google Scholar 

  109. Yanch JC, Webb S, Flower MA, Irvine AT. Constrained deconvolution to remove resolution degradation caused by scatter in SPELT. In: de Graaf CN, Viergever MA, eds. Information processing in medical imaging. New York: Plenum; 1988: 263–276.

    Google Scholar 

  110. Yanch JC, Flower MA, Webb S. A comparison of deconvolution and windowed subtraction techniques for scatter compensation in SPELT. IEEE Trans Med Imaging 1988;7: 13–20.

    Google Scholar 

  111. Tsui BMW, Zhao XD, Cao ZJ, Frey EC. Reconstruction methods for quantitative brain SPELT. IEEE Trans Nucl Sci 1993;40: 214–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: I. Buvat

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buvat, I., Benali, H., Todd-Pokropek, A. et al. Scatter correction in scintigraphy: the state of the art. Eur J Nucl Med 21, 675–694 (1994). https://doi.org/10.1007/BF00285592

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00285592

Key words

Navigation