Skip to main content

Advertisement

Log in

A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals

  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Human activities have led to global changes with direct consequences for biodiversity. For this reason, special concerns have arisen, particularly in respect to global threats such as habitat loss and fragmentation, because they decrease population size, promote the loss of species genetic diversity, contract species geographical distribution and facilitate species loss. Interest in the genetic consequences related to habitat changes has increased in the last decades, so it became crucial to understand how genetic diversity changes due to habitat loss and fragmentation and if the degree of genetic losses is related with species traits. Thus, we conduct a metaanalysis to test if genetic diversity of mammalian populations that live in fragments is lower than those living in continuous habitats and we also explore which species traits could be related with the observed patterns. Through this metaanalysis we detected an overall decrease in allelic diversity, allelic richness, observed heterozygosity and expected heterozygosity in mammalian species that live in situations of high habitat fragmentation. However, not all species are affected the same way. We found that species with larger body mass are the most negatively affected by fragmentation; terrestrial and arboreal mammals are more negatively affected than flying species; herbivores suffer consistent negative effect of fragmentation in the four genetic measures analysed; and forestdependent species are the most susceptible to the negative effects of fragmentation. We expected to detect an increase in inbreeding coefficients in fragments when compared to continuous habitats; however, this pattern did not arise, probably because time since fragmentation was not enough and/or species have ways to avoid inbreeding. The patterns here described allow a better understanding of which mammalian species are more susceptible to the negative effects of habitat loss and fragmentation, potentially giving support for the conservation and management of their populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, R., Quesada, M., Ashworth, L., Herrerias, D., Lobo, J., 2008. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188.

    PubMed  Google Scholar 

  • Arroyo-Rodríguez, V., Mandujano, S., 2006. Forest fragmentation modifles habitat quality for Alouatta palliata. Int.J. Primatol. 27, 1079–1096.

    Google Scholar 

  • Athrey, G., Barr, K.R., Laňce, R.F., Leberg, P.L., 2012. Birds in space and time: genetic changes accompanying anthropogenic habitat fragmentation in the endangered blackcapped vireo (Vireo atricapiiia). Evol. Appl. 5, 540–552.

    PubMed  PubMed Central  Google Scholar 

  • Batáry, P., Báldi, A., 2004. Evidence of an edge effect on avian nést success. Conserv. Biol. 18, 389–400.

    Google Scholar 

  • Biedermann, R., 2003. Body size and areaincidence relationships: is there a general pattern? Glob. Ecol. Biogeogr. 12, 381–387.

    Google Scholar 

  • Blackburn, T.M., Gaston, K.J., 1999. The relationship between animal abundance and body size: a review of the mechanisms. Adv. Ecol. Res. 28, 181–210.

    Google Scholar 

  • Cockburn, A., Scott, M., Scotts, D., 1985. Inbreeding avoidance and malebiased natal dispersal in Antechinus spp. (Marsupialia: Dasyuridae). Anim. Behav. 33, 908–915.

    Google Scholar 

  • Crooks, K.R., 2002. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv. Biol. 16, 488–502.

    Google Scholar 

  • Didham, R.K., Kapos, V., Ewers, R.M., 2012. Rethinkingthe conceptual foundations of habitat fragmentation research. Oikos 121, 161–170.

    Google Scholar 

  • Dietz, G., Dahabreh, I.J., Gurevitch, J., Lajeunesse, M.J., Schmid, C.H., Trikalinos, T.A., Wallace, B.C., 2014. Open-MEE: Software for Ecological and Evolutionary MetaAnalysis.

    Google Scholar 

  • Driscoll, D.A., Banks, S.C., Bartoň, P.S., Lindenmayer, D.B., Smith, A.L., 2013. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol. Evol. 28, 605–613.

    PubMed  Google Scholar 

  • Dutta, T., Sharma, S., Maldonado, J.E., Wood, T.C., Panwar, H.S., Seidensticker, J., 2013. Gene flow and demographic history of leopards (Panthera pardus) in the centrál Indián highlands. Evol. Appl. 6, 949–959.

    PubMed  PubMed Central  Google Scholar 

  • Egger, M., Davey Smith, G., Schneider, M., Minder, C., 1997. Bias in metaanalysis detected by a simple, graphical test. Br. Med. J. 315, 629–634.

    CAS  Google Scholar 

  • Ewers, R.M., Didham, R.K., 2006. Confounding factors in the detection of species responsesto habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142.

    PubMed  Google Scholar 

  • Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515.

    Google Scholar 

  • Frankham, R., 1996. Relationship of genetic to population relationship variation size in wildlife. Conserv. Biol. 10, 1500–1508.

    Google Scholar 

  • Gibbs. J.P., 2001. Demography versus habitat fragmentation as determinants of genetic variation inwild populations. Biol. Conserv. 100, 15–20.

    Google Scholar 

  • Gurevitch, J., Hedges, L.V., 2001. Metaanalysis: combining the results of independent experiments. In: Scheiner, S.M., Gurevitch, J. (Eds.), Design and Analysis of Ecological Experiments. Oxford University Press, oxford, pp. 347–369.

    Google Scholar 

  • Hanski, I., 2015. Habitat fragmentation and species richness. J. Biogeogr. 42, 989–994.

    Google Scholar 

  • Harris, R.J., Reed, J.M., 2002. Behavioral barriers to nonmigratory movements of birds. Ann. Zool. Fennici 39, 275–290.

    Google Scholar 

  • Harrison, F., 2011.Gettingstarted with metaanalysis. Methods Ecol. Evol. 2, 1–10.

    Google Scholar 

  • Henle, K., Davies, K.F., Kleyer, M., Margules, C., Settele, J., 2004. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251.

    Google Scholar 

  • Hoglund, J., 2009. Evolutionary Conservation Genetics. Oxford University Press, New York.

    Google Scholar 

  • Honnay, O., Jacquemyn, H., 2007. Susceptibility of common and rare plant species to tne genetic consequences of habitat fragmentation. Conserv. Biol. 21, 823–831.

    PubMed  Google Scholar 

  • IUCN, 2017. IUCN List Threat. Species, www.iucnredlist.org/.

    Google Scholar 

  • Joricheva, J., Gurevitch. J., Mengersen, K., 2013. Handbook of MetaAnalysis in Ecology and Evolution. Princeton University Press, Princeton and Oxford.

    Google Scholar 

  • Keyghobadi, N., 2007. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85, 1049–1064.

    Google Scholar 

  • Koskimaki, J., Huitu, O., Kotiaho, J.S., Lampila, S., Makela, A., Sulkava, R., Monkkonen, M., 2014. Are habitat loss, predation risk and climate related to the drastic decline in a Siberian flying squirrel population? A 15-year study. Popul. Ecol. 56, 341–348.

    Google Scholar 

  • Lancaster, M.L., Cooper, S.J.B., Carthew, S.M., 2016. Genetic consequences of forest fragmentation by agricultural land in an arboreal marsupial. Landsc. Ecol. 31, 655–667.

    Google Scholar 

  • Lindenmayer, D., Fischer, J., 2006. Tackling the habitat fragmentation panchreston. Trends Ecol. Evol. 22, 127–132.

    PubMed  Google Scholar 

  • MacArthur, R.H., Wilson, E.O., 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Mills, L.S., 1995. Edge effects and isolation: redbacked voles on forest remnants. Conserv. Biol. 9, 395–403.

    Google Scholar 

  • Montgelard, C., Zenboudji, S., Ferchaud, A.L., Arnal, V., Vuuren, B.J., van, 2014. Landscape genetics in mammals. Mammalia 78, 139–157.

    Google Scholar 

  • Morrison, J.C, Sechrest, W., Dinerstein, E., Wilcove, D.S., Lamoreux, J.F., 2007. Persistence of large mammal faunas as indicators of globál human impacts. J. Mammal. 88, 1363–1380.

    Google Scholar 

  • Murphy, G.E.P., Romanuk, T.N., 2014. A metaanalysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103.

    PubMed  Google Scholar 

  • Pabijan, M., Wollenberg, K.C., Vences, M., 2012. Small body size increases the regional differentiation of populations of tropical mantellid frogs (Anura: Mantellidae). J. Evol. Biol. 25, 2310–2324.

    PubMed  Google Scholar 

  • Parr, L., Heintz, M., Lonsdorf, E., Wroblewski, E., 2010. Visual kin recognition in nonhuman primates (Pan troglodytes and Macaca muiatta): inbreeding avoidance or male distinctiveness? J. Comp. Psychol. 124, 343–350.

    PubMed  PubMed Central  Google Scholar 

  • Peakall, R., Ruibal, M., Lindenmayer, D.B., 2003. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fusápes. Evolution 57, 1182–1195.

    PubMed  Google Scholar 

  • Potter, S., Eldridge, M.D.B., Cooper, S.J.B., Paplinska, J.Z., Taggart, D.A., 2012. Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the shorteared rockwallaby (Petrogale brachyotis). Conserv. Genet. 13, 937–952.

    Google Scholar 

  • Prevedello, J.A., Vieira, M.V., 2010. Does the type of matrix matter? A quantitative review of the evidence. Biodivers. Conserv. 19, 1205–1223.

    Google Scholar 

  • Prugh, LR., Hodges, K.E., Sinclair, A.R.E., Brashares, J.S., 2008. Effect of habitat area and isolation on fragmented animal populations. Proč. Nati. Acad. Sci. U. S. A. 105, 20770–20775.

    CAS  Google Scholar 

  • Purvis, A., Gittleman, J.L., Cowlishaw, G., Mace, G.M., 2000. Predicting extinction risk in declining species. Proč. Biol. Sci. 267, 1947–1952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Püttker, T., Meyer-Lucht, Y., Sommer, S., 2008. Fragmentation effects on population density of three rodent species in secondary Atlantic Rainforest, Brazil. Stud. Neotrop. Fauna Environ. 43, 11–18.

    Google Scholar 

  • Quesnelle, P.E., Lindsay, K.E., Fahrig, L., 2014. Low reproductive rate predicts species sensitivity to habitat loss: a metaanalysis of wetland vertebrates. PLoS One 9, e90926.

    PubMed  PubMed Central  Google Scholar 

  • Quin, D.G., Riek, A., Green, S., Smith, A.P., Geiser, F., 2010. Seasonally constant fleld metabolic rates in freeranging sugargliders (Petaurus breviceps). Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 155, 336–340.

    Google Scholar 

  • R Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Reis, N.R., Peracchi, A.L, Pedro, W.A., Lima, I.P., 2006. Mamíferos do Brasil, 2nd ed. Universidade Estadual de Londrina, Londrina and Brazil.

    Google Scholar 

  • Rendall, D., Rodman, P.S., Emond, R.E., 1996. Vocal recognition of individuals and kin in freeranging Rhesus monkeys. Anim. Behav. 51, 1007–1015.

    Google Scholar 

  • RevMan, 2014. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, Version 5.3.

    Google Scholar 

  • Rosenberg, M.S., 2005. The filedrawer problém revisited: a generál weighted method for calculating failsafe numbers in metaanalysis. Evolution 59, 464–468.

    PubMed  Google Scholar 

  • Rosenthal, R., 1979. The “filé drawer problém” and tolerance for null results. Psychol. Bull. 86, 638–641.

    Google Scholar 

  • Sanderson, E.W., Redford, K.H., Chetkiewicz, C.L.B., Medellin, R.A., Rabinowitz, A.R., Robinson, J.G., Taber, A.B., 2002. Planning to savé a species: the jaguár as a model. Conserv. Biol. 16, 58–72.

    Google Scholar 

  • Strahan, R., 1983. The Australian Museum Complete Book of Australian Mammals. Angus & Robertson Publishers, Sydney, Australia.

    Google Scholar 

  • Struebig, M.J., Kingston, T., Petit, E.J., Le Comber, S.C., Zubaid, A., Mohd-Adnan, A., Rossiter, S.J., 2011. Parallel declines in species and genetic diversity in tropical forest fragments. Ecol. Lett. 14, 582–590.

    PubMed  Google Scholar 

  • Swihart, R.K., Gehring, T.M., Kolozsvary, M.B., Nupp, T.E., 2003. Responses of “resistant” vertebrates to habitat loss and fragmentation: the importance of niche breadth and range boundaries. Divers. Distrib. 9, 1–18.

    Google Scholar 

  • Thornton, D.H., Branch, L.I., Sunquist, M.E., 2011. The relative influence of habitat loss and fragmentation: do tropical mammals meet the temperate paradigm? Ecol. Appl. 21, 2324–2333.

    PubMed  Google Scholar 

  • Tucker, M.A., Bohninggaese, K., Fagan, W.F., Fryxell, J.M., Van Moorter, B., Alberts, S.C., Ali, A.H., Allen, A.M., Attias, N., Avgar, T., Bartlambrooks, H., Bayarbaatar, B., Belant, J.L, Bertassoni, A., Beyer, D., Bidner, L., Van Beest, F.M., Blake, S., Blaum, N., Bracis, C., Brown, D., De Bruyn, P.J.N., Cagnacci, F., Diefenbach, D., Douglashamilton, L., Fennessy, J., Fichtel, C., Fiedler, W., Fischer, C., Fischhoff, I., Fleming, C.H., Ford, A.T., Fritz, S.A., Gehr, B., Goheen, J.R., Gurarie, E., Hebblewhite, M., Heurich, M., Hewison, A.J.M., Hof, C., Hurme, E., Isbell, L.A., Janssen, R., Jeltsch, F., Kaczensky, P., Kane, A., Kappeler, P.M., Kauffman, M., Kays, R., Kimuyu, D., Koch, F., Kranstauber, B., Lapoint, S., Mattisson, J., Medici, E.P., Mellone, U., Merrill, E., Morrison, T.A., Díazmuňoz, S.L., Mysterud, A., Nandintsetseg, D., Nathan, R., Niamir, A., Odden, J., Hara, R.B.O., Oliveirasantos, L.G.R., Olson, K.A., Patterson, B.D., De Paula, R.C, Pedrotti, L., Reineking, B., Rimmler, M., 2018. Moving in the anthropocene: globál reductions in terrrestrial mammalian movements. Science 359, 466–469.

    CAS  PubMed  Google Scholar 

  • Vetter, D., Hansbauer, M.M., Végvári, Z., Storch, L., 2011. Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34, 1–8.

    Google Scholar 

  • Villard, M.A., Metzger, J.P., 2014. Beyond the fragmentation debatě: a conceptual model to predict when habitat configuration really matters. J. Appl. Ecol. 51, 309–318.

    Google Scholar 

  • Waits, L.P., Cushman, S.A., Spear, S.F., 2016. Applications of landscape genetics to connectivity research interrestrial animals. In: Balkenhol, N., Cushman, S.A., Storfer, A.T., Waits, L.P. (Eds.), Landscape Genetics: Concepts, Methods, Applications. West Sussex, pp. 199–219.

    Google Scholar 

  • Williams, B.L, Brawn, J.D., Paige, K.N., 2003. Landscape scale genetic effects of habitat fragmentation on a high gene flow species: speyeria idalia (Nymphalidae). Mol. Ecol. 12, 11–20.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lino, A., Fonseca, C., Rojas, D. et al. A meta-analysis of the effects of habitat loss and fragmentation on genetic diversity in mammals. Mamm Biol 94, 69–76 (2019). https://doi.org/10.1016/j.mambio.2018.09.006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.09.006

Keywords

Navigation