Skip to main content

Advertisement

Log in

Unmasking the invader: Genetic identity of invasive wild boar from three minor islands off Sardinia (Italy)

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Introduced invasive species such as the wild boar (Sus scrofa) represent a huge threat to the biodiversity of small islands, in that they may lead to ecological disequilibria and taxa extinctions. Additionally, if introduced populations with an alien or admixed genetic origin disperse from islands, they may jeopardize the endemic genetic diversity of mainland conspecifics through introgressive hybridization.

Despite past hybridization with local domestic pigs and introduced continental wild boar, the wild boar population of Sardinia (Italy) maintained a significant amount of genomic diversity and was thus classified as a distinct subspecies (Sus scrofa meridionalis) as it clustered separately from all other European S. scrofa. In the past few decades, however, wild boar populations of uncertain origin have appeared on three islands off the Sardinian coast.

We accordingly investigated the genetic composition of these three island wild boar populations by using a panel of 16 autosomal microsatellites and a reference dataset including domestic pig and wild boar populations from Sardinia, mainland Italy and other European regions, in order to reconstruct the history of each colonization and the possible origin of colonizers.

The genetic make-up of the three populations was found to diverge from that of Sardinia to such an extent that they could not be classified as Sardinian wild boar. In fact, their genome bore traces of multiple introductions from different source populations, as well as introgression from the domestic pig, followed by the effects of relative isolation and genetic drift. Thus, besides impactingon island biodiversity and human activities, these admixed populations can represent a threat to the endemic subspecies (S. s. meridionalis) inhabiting the major island on account of their proximity to the Sardinian coasts. We thereby argue for a strict control of these populations or, whereby feasible, their eradication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Simpson, S., Blampied, N., Péniche, G., et al., 2013. Genetic structure of introduced populations: 120-year-old DNA footprint of historic introduction in an insular small mammal population. Ecol. Evol. 3, 614–628.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, T.M., Von Holdt, B.M., Candille, S.I., et al., 2009. Molecular and evolutionary history of melanism in North American gray wolves. Science 323, 1339–1343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apollonio, M., Randi, E., Toso, S., 1988. The systematics of the wild boar (Sus scrofa L.) in Italy. Boll. Zool. 3, 213–221.

    Article  Google Scholar 

  • Barrett, S.C.H., Husband, B.C., 1990. The genetics of plant migration and colonization. In: Brown, A.H.D., Clegg, M.T., Kahler, A.L., Weir, B.S. (Eds.), Plant Population Genetics, Breeding and Genetic Resources. Sinauer Ass. Inc., Sunderland, Massachussetts, pp. 254–277.

    Google Scholar 

  • Barrios-Garcia, M.N., Ballari, S.A., 2012. Impact of wild boar (Sus scrofa) in its introduced and native rage: a review. Biol. Invasions 14, 2283–2300.

    Article  Google Scholar 

  • Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N., Bonhomme, F., 2004. GENETIX 4.05, logiciel sous Windowstm pour la génétique des populations, 4.05. In: Laboratoire Génome, Populations, Interactions CNRS UMR 5000. Université’ de Montpellier II, Montpellier, France.

    Google Scholar 

  • Calmanti, R., Franzetti, B., Riga, F., Technical report 18.05.2007 2007. Riduzione del carico pascolante di ibridi cinghiale-maiale presenti alló stato brado sull’isola dell’Asinara.

  • Canu, A., Costa, S., Iacolina, L., Piatti, P., Apollonio, M., Scandura, M., 2014. Are captive wild boar more introgressed than free-ranging wild boar? Two case studies in Italy. Eur. J. Wildlife Res. 60 (3), 459–467.

    Article  Google Scholar 

  • Canu, A., Vilaça, S.T., Iacolina, L., Apollonio, M., Bertorelle, G., Scandura, M., 2016. Lack of polymorphism at the MCI R wild-type allele and evidences of domestic allele introgression at two nuclear loci across European wild boar populations. Mamm. Biol. 81 (5), 477–479.

    Article  Google Scholar 

  • Carlsson, J., 2008. Effects of microsatellite null alleles on assignment testing. J. Hered. 99, 616–623.

    Article  CAS  PubMed  Google Scholar 

  • Coblentz, B.E., Baber, D.W., 1987. Biology and control of feral pigs on Isla Santiago, Galapagos, Ecuador. J. Appl. Ecol. 24, 403–418.

    Article  Google Scholar 

  • Courchamp, F., Chapuis, J.L., Pascal, M., 2003. Mammal invaders on islands: impact, control and control impact. Biol. Rev. 78, 347–383.

    Article  PubMed  Google Scholar 

  • Donlan, C.J., Campbell, K., Cabrera, W., et al., 2007. Recovery of the Galapagos Rail (Laterallus spilonotus) following the removal of invasive mammals. Biol. Conserv. 138 (3), 520–524.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., Goudet.J., 2005. Detecting the number of clusters of individuals using the software Structure: a simulation study. Mol. Ecol. 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Farkas, T.E., Hendry, A.P., Nosil, P., Beckerman, A.P., 2015. How maladaptation can structure biodiversity: eco-evolutionary island biogeography. Trends Ecol. Evol. 30, 154–160.

    Article  PubMed  Google Scholar 

  • Frankham, R., 1997. Do island populations have less genetic variation than mainland populations? Heredity 78, 311–327.

    Article  PubMed  Google Scholar 

  • Garcia, G., Vergara, J., Lombardi, R., 2011. Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genet. Mol. Biol. 34 (2), 329–337.

    Google Scholar 

  • Goedbloed, D.J., Megens, H.J., Van Hooft, P., et al., 2013. Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Mol. Ecol. 22, 856–866.

    Article  CAS  PubMed  Google Scholar 

  • Iacolina, L., Scandura, M., Bongi, P., Apollonio, M., 2009. Nonkin associations in wild boar social units. J. Mammal. 90, 666–674.

    Article  Google Scholar 

  • Iacolina, L., Scandura, M., Goedbloed, D.J., et al., 2016. Genomic diversity and differentiation of a managed island wild boar population. Heredity 116(1), 60–67.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, T.H., Stattersfield, A.J., 1990. A global review of island endemic birds. Ibis 132, 167–180.

    Article  Google Scholar 

  • Kalinowski, S.T., 2005. HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189.

    Article  CAS  Google Scholar 

  • Keller, L.F., Biebach, I., Ewing, S.R., Hoeck, P.E.A., 2012. The genetics of reintroductions: inbreeding and genetic drift. In: Ewen, J.G., Armstrong, D.P., Parker, K.A., Seddon, P.J. (Eds.), Reintroduction Biology. Wiley-Blackwell, Oxford, pp. 360–394.

    Chapter  Google Scholar 

  • Kessler, C.C., 2002. Eradication of feral goats and hogs and consequences for other biota on Sarigan Island, Commonwealth of the Northern Mariana Islands. In: Veitch, C.R., Clout, M.N. (Eds.), Turning the Tide: The Eradication of Invasive Species. IUCN-World Conservation Union, Gland, pp. 132–149.

    Google Scholar 

  • Largiadèr, C.R., 2007. Hybridization and introgression between native and alien species. In: Nentwig, W. (Ed.), Biological Invasions, Ecological Studies, vol. 193. Springer Publisher, Heidelberg, pp. 275–292.

    Article  Google Scholar 

  • Lawson, D., van Dorp, L., Falush, D., 2018. A Tutorial on How (not) to Over-interpret STRUCTURE/ADMIXTURE Bar Plots., https://doi.org/10.1101/066431.

    Google Scholar 

  • Luikart, G., Cornuet, J.M., 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237.

    Article  Google Scholar 

  • Massei, G., Genov, P., 2004. The environmental impact of wild boar. Galemys 16, 135–145.

    Google Scholar 

  • Masseti, M., 2012. Atlas of Terrestrial Mammals of the Ionian and Aegean Islands. De Gruyter, Berlin.

    Book  Google Scholar 

  • McMillan, L.F., Fewster, R.M., 2017. Visualizations for genetic assignment analyses using the saddlepoint approximation method. Biometrics 73, 1029–1041, https://doi.org/10.1111/biom.12667.

    Article  CAS  PubMed  Google Scholar 

  • Nogueira-Filho, S.L.G., Nogueira, S.S.C., Fragoso, J.M.V., 2009. Ecological impacts of feral pigs in the Hawaiian islands. Biodivers. Conserv. 18, 3677–3683.

    Article  Google Scholar 

  • Olden, J.D., Poff, N.L., Douglas, M.R., Douglas, M.E., Fausch, K.D., 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24.

    Article  PubMed  Google Scholar 

  • Parco Nazionale delPArcipelago di La Maddalena, 2010. Park Management Plan (Accessed November 2016) https://doi.org/www.lamaddalenapark.it/documenti/23.

    Google Scholar 

  • Parco Nazionale dell’Asinara, 2006. Park Management Plan (Accessed November 2016) https://doi.org/www.parcoasinara.org/?modulo=contenuti&id=354.

    Google Scholar 

  • Parco Nazionale dell’Asinara, 2012. Linee guida per la eradicazione degli ibridi di suinox cinghiale dal Parco Nazionale dell’Asinara periodo 2013–2015 (Accessed November 2016) https://doi.org/www.sardegnaambiente.it/documenti/3_68_20131029141615.pdf.

    Google Scholar 

  • Pérez-Espona, S., Hall, R.J., Perez-Barberia, F., et al., 2013. The impact of past introductions on an iconic and economically important species, the red deer of Scotland. J. Hered. 104 (1), 14–22.

    Article  PubMed  Google Scholar 

  • Piry, S., Luikart, G., Cornuet, J.M., 1999. Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503.

    Article  Google Scholar 

  • Pritchard, J. K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reaser, J. K., Meyerson, L.A., Cronk, Q., et al., 2007. Ecological and socioeconomic impacts of invasive alien species in island ecosystems. Environ. Conserv. 34, 98–111.

    Article  Google Scholar 

  • Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43, 223–225.

    Article  PubMed  Google Scholar 

  • Rousset, F., 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Res. 8, 103–106.

    Article  Google Scholar 

  • Sakai, A.K., Allendorf, F.W., Holt, J.S., et al., 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332.

    Article  Google Scholar 

  • Scandura, M., Iacolina, L., Crestanello, B., et al., 2008. Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Mol. Ecol. 17, 1745–1762.

    Article  CAS  PubMed  Google Scholar 

  • Scandura, M., Iacolina, L., Cossu, A., Apollonio, M., 2011. Effects of human perturbation on the genetic make-up of an island population: the case of the Sardinian wild boar. Heredity 106, 1012–1020.

    Article  CAS  PubMed  Google Scholar 

  • Simberloff, D., 2000. Extinction-proneness of island species - causes and management implications. Raffles Bull. Zool. 48 (1), 1–19.

    Google Scholar 

  • Thompson, J.N., 1998. Rapid evolution as an ecological process. Trends Ecol. Evol. 13, 329–332.

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P., 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538.

    Article  CAS  Google Scholar 

  • Wallace, B., 1975. Hard and soft selection revisited. Evolution 29, 465–473.

    Article  PubMed  Google Scholar 

  • Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analyses of population structure. Evolution 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Whittaker, R.J., Fernández-Palacios, J.M., 2007. Island Biogeography. In: Ecology, Evolution and Conservation, second ed. Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Canu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canu, A., Apollonio, M. & Scandura, M. Unmasking the invader: Genetic identity of invasive wild boar from three minor islands off Sardinia (Italy). Mamm Biol 93, 29–37 (2018). https://doi.org/10.1016/j.mambio.2018.07.008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.07.008

Keywords

Navigation