Skip to main content
Log in

Is nocturnal activity compensatory in chamois? A study of activity in a cathemeral ungulate

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Different species exhibit individual daily and annual activity patterns in response to a range of intrinsic and extrinsic drivers. Historically, research on the activity budgets of large wild animals focused on daylight hours due to the logistical difficulties of observing animals at night. Thanks to recent advances in animal-attached technology, however, this research can be extended to a 24-h timeframe. Taking advantage of GPS collars with activity sensors collecting a large amount of data per hour, we separately studied diurnal and nocturnal activity patterns of Alpine chamois (Rupicapra rupicapra), in order to identify the factors affecting them and the correlation between them. From March 2010 to November 2013, we collected data on 17 chamois in the Swiss National Park, a strict Alpine nature reserve where human management was forbidden and human harassment quite rare. Environmental factors were found to significantly influence both diurnal and nocturnal activity rhythms, with temperature and seasonality playing a pivotal role. Surprisingly, we detected a stable peak of activity in the first part of the night, which varied only slightly over the year. In summer, the nocturnal activity of males was inversely correlated to diurnal activity, arguably to compensate for scarce diurnal food intake. Conversely, winter nocturnal activity was positively related to the diurnal activity and served as a cumulative opportunity for energy intake. Chamois showed a weak lunarphilia, with a slight increase in activity levels during moonlit nights, especially during the mating season. In conclusion, our findings denote chamois as a cathemeral species able to adapt its behavioural patterns to match varying environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apollonio, M., Andersen, R., Putman, R., 2010. European Ungulates and Their Management in the 21st Century. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Barton, K., 45–45 2013. Package “MuMIn: Multi-Model Inference” for R. R Package Version 195.

    Google Scholar 

  • Belovsky, G.E., 1984a. Summer diet optimization by beaver. Am. Midl. Nat. 111, 209–222.

    Article  Google Scholar 

  • Belovsky, G.E., 1984b. Moose and snowshoe hare competition and a mechanistic explanation from foraging theory. Oecologia 61, 150–159.

    Article  CAS  PubMed  Google Scholar 

  • Belovsky, G.E., Slade, J.B., 1986. Time budgets of grassland herbivores: body size similarities. Oecologia 70, 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Bennie, J.J., Duffy, J.P., Inger, R., Gaston, K.J., 2014. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. 111, 13727–13732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.

    Article  Google Scholar 

  • Brivio, F., Bertolucci, C., Tettamanti, F., Filli, F., Apollonio, M., Grignolio, S., 2016. The weather dictates the rhythms: Alpine chamois activity is well adapted to ecological conditions. Behav. Ecol. Sociobiol. 70, 1291–1304.

    Article  Google Scholar 

  • Brivio, F., Grignolio, S., Brogi, R., Benazzi, M., Bertolucci, C., Apollonio, M., 2017. An analysis of intrinsic and extrinsic factors affecting the activity of a nocturnal species: the wild boar. Mamm. Biol. - Z. Für Säugetierkd. 84, 73–81.

    Article  Google Scholar 

  • Caley, P., 1997. Movements, activity patterns and habitat use of feral pigs (Sus scrofa) in a tropical habitat. Wildl. Res. 24, 77–87.

    Article  Google Scholar 

  • Carnevali, L., Lovari, S., Monaco, A., Mori, E., 2016. Nocturnal activity of a “diurnal” species, the Northern chamois, in a predator-free Alpine area. Behav. Process. 126.

    Google Scholar 

  • Chappell, M.A., 1983. Thermal limitations to escape responses in desert grasshoppers. Anim. Behav. 31, 1088–1093.

    Article  Google Scholar 

  • Crompton, A.W., Taylor, C.R., Jagger, J.A., 1978. Evolution of homeothermy in mammals. Nature 272, 333–336.

    Article  CAS  PubMed  Google Scholar 

  • Curtis, D.J., Rasmussen, M.A., 2006. The evolution of cathemerality in primates and other mammals: a comparative and chronoecological approach. Folia Primatol. (Basel) 77, 178–193.

    Article  CAS  Google Scholar 

  • Darmon, G., Bourgoin, G., Marchand, P., Garel, M., Dubray, D., Jullien, J.-M., Loison, A., 2014. Do ecologically close species shift their daily activities when in sympatry? A test on chamois in the presence of mouflon: daily activities and behavioural interference. Biol. J. Linn. Soc. 111, 621–626.

    Article  Google Scholar 

  • du Plessis, K.L., Martin, R.O., Hockey, P.A.R., Cunningham, S.J., Ridley, A.R., 2012. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070.

    Article  Google Scholar 

  • Enggist-Düblin, P., Ingold, P., 2003. Modelling the impact of different forms of wildlife harassment, exemplified by a quantitative comparison of the effects of hikers and paragliders on feeding and space use of chamois Rupicapra rupicapra. Wildl. Biol. 9, 37–45.

    Article  Google Scholar 

  • Heesy, C.P., Hall, M.I., 2010. The nocturnal bottleneck and the evolution of mammalian vision. Brain Behav. Evol. 75, 195–203.

    Article  PubMed  Google Scholar 

  • Hetem, R.S., Strauss, W.M., Fick, L.G., Maloney, S.K., Meyer, L.C.R., Shobrak, M., Fuller, A., Mitchell, D., 2012. Activity re-assignment and microclimate selection of free-living Arabian oryx: responses that could minimise the effects of climate change on homeostasis? Zoology 115, 411–416.

    Article  PubMed  Google Scholar 

  • Ingold, P., Pfister, U., Baechler, E., Enggist-Dueblin, P., 1998. Pattern and rhyzm of activity in alpine chamois (Rupicapra r. rupicapra) during winter. Z. Für Säugetierkd. 63, 183–185.

    Google Scholar 

  • Jetz, W., Steffen, J., Linsenmair, K.E., 2003. Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars. Oikos 103, 627–639.

    Article  Google Scholar 

  • Keuling, O., Stier, N., Roth, M., 2008. How does hunting influence activity and spatial usage in wild boar Sus scrofa L.? Eur. J. Wildl. Res. 54, 729–737.

    Article  Google Scholar 

  • Kilpatrick, A.M., 2003. The impact of thermoregulatory costs on foraging behaviour: a test with American Crows (Corvus brachyrhynchos) and eastern grey squirrels (Sciurus carolinensis). Evol. Ecol. Res. 5, 781–786.

    Google Scholar 

  • Long, R.A., Bowyer, R.T., Porter, W.P., Mathewson, P., Monteith, K.L., Kie, J.G., 2014. Behavior and nutritional condition buffer a large-bodied endotherm against direct and indirect effects of climate. Ecol. Monogr. 84, 513–532.

    Article  Google Scholar 

  • Mason, T.H.E., Stephens, P.A., Apollonio, M., Willis, S.G., 2014. Predicting potential responses to future climate in an Alpine ungulate: interspecific interactions exceed climate effects. Glob. Change Biol. 20, 3872–3882.

    Article  Google Scholar 

  • Mason, T.H.E., Brivio, F., Stephens, P.A., Apollonio, M., Grignolio, S., 2017. The behavioral trade-off between thermoregulation and foraging in a heat-sensitive species. Behav. Ecol. 28, 908–918.

    Article  Google Scholar 

  • Menaker, M., Moreira, L.F., Tosini, G., 1997. Evolution of circadian organization in vertebrates. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas E Biol. 30, 305–313.

    Article  CAS  Google Scholar 

  • Oberosler, V., Groff, C., Iemma, A., Pedrini, P., Rovero, F., 2017. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. - Z. Für Säugetierkd. 87, 50–61.

    Article  Google Scholar 

  • Ohashi, H., Saito, M., Horie, R., Tsunoda, H., Noba, H., Ishii, H., Kuwabara, T., Hiroshige, Y., Koike, S., Hoshino, Y., Toda, H., Kaji, K., 2013. Differences in the activity pattern of the wild boar Sus scrofa related to human disturbance. Eur. J. Wildl. Res. 59, 167–177.

    Article  Google Scholar 

  • Owen-Smith, N., 1998. How high ambient temperature affects the daily activity and foraging time of a subtropical ungulate, the greater kudu (Tragelaphus strepsiceros). J. Zool. 246, 183–192.

    Article  Google Scholar 

  • Pachlatko, T., Nievergelt, B., 1985. Time budgeting, range use pattern and relationships within groups of individually marked chamois. In: Lovari, S. (Ed.) The Biology and Management on Mountain Ungulates. Croom Helm, Beckenham and London, UK, pp. 93–101.

    Google Scholar 

  • Parker, M.A., 1982. Thermoregulation by diurnal movement in the barberpole grasshopper (Dactylotum bicolor). Am. Midl. Nat. 107, 228–237.

    Article  Google Scholar 

  • Podgórski, T., Baś, G., Jędrzejewska, B., Sönnichsen, L., Śnieżko, S., Jędrzejewski, W., Okarma, H., 2013. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J. Mammal. 94, 109–119.

    Article  Google Scholar 

  • Prendergast, B.J., Nelson, R.J., Zucker, I., 2002. Mammalian seasonal rhythms. In: Hormones, Brain and Behavior. Elsevier, pp. 93–156.

    Chapter  Google Scholar 

  • Prugh, L.R., Golden, C.D., 2014. Does moonlight increase predation risk? Meta-analysis reveals divergent responses of nocturnal mammals to lunar cycles. J. Anim. Ecol. 83, 504–514.

    Article  PubMed  Google Scholar 

  • RCore Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Raveh, S., Dongen, W.F.D., van, Grimm, C., Ingold, P., 2012. Cone opsins and response of female chamois (Rupicapra rupicapra) to differently coloured raincoats. Eur. J. Wildl. Res. 58, 811–819.

    Article  Google Scholar 

  • Richards, S.A., Whittingham, M.J., Stephens, P.A., 2011. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89.

    Article  Google Scholar 

  • Russo, L., Massei, G., Genov, P.V., 1997. Daily home range and activity of wild boar in a Mediterranean area free from hunting. Ethol. Ecol. Evol. 9, 287–294.

    Article  Google Scholar 

  • Schmid, B., Helfrich-Forster, C., Yoshii, T., 2011. A new ImageJ plug-in “ActogramJ” forchronobiological analyses. J. Biol. Rhythms 26, 464–467.

    Article  PubMed  Google Scholar 

  • Schröder, W., von Elsner-Schack, I., 1985. Correct age determination in chamois. In: Lovari, S. (Ed.) The Biology and Management of Mountain Ungulates. Croom Helm, London, pp. 67–70.

    Google Scholar 

  • Shi, J., Dunbar, R.I.M., Buckland, D., Miller, D., 2003. Daytime activity budgets of feral goats (Capra hircus) on the Isle of Rum: influence of season, age, and sex. Can. J. Zool. 81, 803–815.

    Article  Google Scholar 

  • Shi, J., Dunbar, R.I.M., Li, D., Xiao, W., 2006. Influence of climate and daylength on the activity budgets of feral goats (Capra hircus) on the isle of Rum, Scotland. Zool. Res. 27, 561–568.

    Google Scholar 

  • Sokal, R., Rohlf, F., 1995. Biometry: The Principles and Practice of Statistics in Biological Research/Robert R. Sokal and F.James Rohlf. W.H. Freeman and Company, New York, USA.

    Google Scholar 

  • Speakman, J.R., Król, E., 2010. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746.

    PubMed  Google Scholar 

  • Šprem, N., Zanella, D., Ugarkovic, D., Prebanic, I., Gancevic, P., Corlatti, L., 2015. Unimodal activity pattern in forest-dwelling chamois: typical behaviour or interspecific avoidance? Eur. J. Wildl. Res. 61, 789–794.

    Article  Google Scholar 

  • Stelzner, J.K., Hausfater, G., 1986. Posture, microclimate, and thermoregulation in yellow baboons. Primates 27, 449–463.

    Article  Google Scholar 

  • Tattersall, I., 1987. Cathemeral activity in primates: a definition. Folia Primatol. (Basel) 49, 200–202.

    Article  Google Scholar 

  • Tattersall, I., 2006. The concept of cathemerality: history and definition. Folia Primatol. (Basel) 77, 7–14.

    Article  Google Scholar 

  • Terrien, J., Perret, M., Aujard, F., 2011. Behavioral thermoregulation in mammals: a review. Front. Biosci. Landmark Ed. 16, 1428–1444.

    Article  PubMed  Google Scholar 

  • Von Hardenberg, A., Bassano, B., Peracino, A., Lovari, S., 2000. Male Alpine chamois occupy territories at hotspots before the mating season. Ethology 106, 617–630.

    Article  Google Scholar 

  • Walmsley, L., Hanna, L., Mouland, J., Martial, F., West, A., Smedley, A.R., Bechtold, D.A., Webb, A.R., Lucas, R.J., Brown, T.M., 2015. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol. 13, e1002127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, S.N., 2013. A simple test for random effects in regression models. Biometrika 100, 1005–1010.

    Article  Google Scholar 

  • Wu, Y., Wang, Haifeng, Wang, Haitao, Feng, J., 2018. Arms race of temporal partitioning between carnivorous and herbivorous mammals. Sci. Rep. 8.

  • Zoller, H., 1995. Vegetationskarte des Schweizerischen Nationalparks. Kommission der Schweizerischen Akademie der Naturwissenschaften SANW zur wissenschaftlichen Erforschung des Nationalparks (WNPK), Nr. 85, Zernez.

    Google Scholar 

  • Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Analysing Ecological Data. Springer New York, New York, NY.

    Book  Google Scholar 

  • Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology With R, Statistics for Biology and Health. Springer New York, New York, NY.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Grignolio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grignolio, S., Brivio, F., Apollonio, M. et al. Is nocturnal activity compensatory in chamois? A study of activity in a cathemeral ungulate. Mamm Biol 93, 173–181 (2018). https://doi.org/10.1016/j.mambio.2018.06.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.06.003

Keywords

Navigation