Skip to main content
Log in

Isotopic niche structure of a mammalian herbivore assemblage from a West African savanna: Body mass and seasonality effect

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Understanding the mechanisms of species coexistence within local assemblages can play a crucial role in conservation of a species. There is little understanding of how large mammalian bovid species from West Africa partition diet resources, and to what extent they may vary their diet and habitat selection seasonally in order to coexist. Here we studied an assemblage of eleven bovid species in Pendjari Biosphere Reserve, West Africa and used faecal stable isotopes of carbon (δ13C) and nitrogen (δ15N) to test the impact of body mass diet partitioning at a seasonal scale. We found a significant positive relationship between isotopic niche similarity and body size similarity both in dry (p < 0.001) and wet (p < 0.001) season. Partitioning of carbon isotope niches is at least partly due to interactions amongst species rather than historical effects. Our findings also show numerous patterns in resource partitioning amongst the 11 bovid species studied, suggesting that different species used dietary resources in contrasting ways. In practice, actual resource competition between bovid species is difficult to demonstrate, but there exists much overlap in diet along the stable carbon isotope axis for most of the studied species. However we conclude that in our study area, especially in the wet season, niche breadth and diet overlap remain large. Abundant resources and low herbivore densities mean there is no need for herbivores to specialize, because they do not have to compete over scarce resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P., 1980. Some comments on measuring niche overlap. Ecology 61, 44–49.

    Article  Google Scholar 

  • Amahowé, O.I., Houessou, L.G., Nago, G., Nobime, G., Ahokpè, E., Djagoun, C.A.M.S., Toko, I., Bonou, W., Gouwakinnou, G., Zannou, O., Agossa, N., Kindjinou, A., 2013. Dénombrement pédestre de la faune dans la Réserve de Biosphère de la Pendjari et la Réserve de Biosphère Transfrontalière du W-Bénin. CENAGREF-PAPE, Cotonou, Bénin.

  • Ambrose, S.H., 1991. Effects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs. J. Archaeol. Sci. 18, 293–317.

    Article  Google Scholar 

  • Assédé, E.P.S., Adomou, A.C., Sinsin, B., 2012. Magnoliophyta, Biosphere Reserve of Pendjari, Atacora Province Benin. Check List. 8, 642–661.

    Article  Google Scholar 

  • Beekman, J.H., Prins, H.H.T., 1989. Feeding strategies of sedentary large herbivores in East Africa, with emphasis on the African buffalo. J. Afr. Ecol. 27, 129–147.

    Article  Google Scholar 

  • Bell, R.H.V., 1971. Agrazing system in the Serengeti. Sci. Am. 225, 86–93.

    Google Scholar 

  • Belovsky, G.E., 1986. Generalist herbivore foraging and its role in competitive interactions. Am. Zool. 26, 51–69.

    Article  Google Scholar 

  • Bowen, W.D., Siniff, D.B., 1999. Distribution, population biology, and feeding ecology of marine mammals. In: Renolds, I.I.I.J.E., Rommel, S.A. (Eds.), Biology of Marine Mammals. Smithsonian Institution Press, Washington, D.C, pp. 423–484.

    Google Scholar 

  • Cerling, T.E., Harris, J.M., Passey, B.H., 2003. Diets of East African Bovidae based on stable isotope analysis. J. Mamm. 84, 456–470.

    Article  Google Scholar 

  • Clauss, M., Schwarm, A., Ortmann, S., Streich, W.J., Hummel, J., 2007a. A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comp. Biochem. Physiol. A 148, 249–265.

    Article  CAS  Google Scholar 

  • Clauss, M., Streich, W.J., Schwarm, A., Ortmann, S., Hummel, J., 2007b. The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oikos 116, 209–216.

    Article  Google Scholar 

  • Codron, D., Clauss, M., 2010. Rumen physiology constraints diet niche: linking digestive physiology and food selection across wild ruminant species. Can. J. Zool. 88, 1129–1138.

    Article  Google Scholar 

  • Codron, D., Codron, J., 2008. Reliability of 813C and 815N in faeces for reconstructing savanna herbivore diet. Mamm. Biol. 74, 36–48.

    Article  Google Scholar 

  • Codron, D., Lee-Thorp, J.A., Sponheimer, M., Codron, J., Brink, J.S., 2007. Significance of diet type and diet quality for ecological diversity of African ungulates. J. Anim. Ecol. 76, 526–537.

    Article  PubMed  Google Scholar 

  • Codron, D., Brink, J.S., Rossouw, L., Clauss, M., Codron, J., Lee-Thorp, J.A., Sponheimer, M., 2008. Functional differentiation of African grazing ruminants: an example of specialized adaptations to very small changes in diet. Biol. J. Linn. Soc. 94, 755–764.

    Article  Google Scholar 

  • Codron, D., Codron, J., Lee-Thorp, J.A., Sponheimer, M., Grant, C.C., Brink, J.S., 2009. Stable isotope evidence for nutritional stress, competition, and loss of functional habitat as factors limiting recovery of rare antelope in southern Africa. J. Arid. Environ. 73, 449–457.

    Article  Google Scholar 

  • Codron, D., Hull, J., Brink, J.S., Codron, J., Ward, D., Clauss, M., 2011. Effect of competition on niche dynamics of syntopic grazing ungulates: contrasting the predictions of habitat selection models using stable isotope analysis. Evol. Ecol. Res. 13, 217–235.

    Google Scholar 

  • Crawford, K., McDonald, R.A., Bearhop, S., 2008. Applications of stable isotope techniques to the ecology of mammal. Mamm. Rev. 38, 87–107. de Iongh, H.H., de Jong, C.B., vanGoethem, J., Klop, E., Brunsting, A.M.H., Loth, P.E., Prins, H.H.T., 2011. Resource partitioning among African savanna herbivores in North Cameroon: the importance of diet composition, food quality and body mass. J. Trop. Ecol. 27, 503–513.

    Google Scholar 

  • Demment, M.W., Van Soest, P.J., 1985. A nutritional explanation for body-size patterns of ruminant and non ruminant herbivores. Am. Nat. 125, 641–672.

    Article  Google Scholar 

  • Diamond, J., 1986. Evolution of ecological segregation in the New Guinea montane avifauna. In: Diamond, J., Case, T.J. (Eds.), Community Ecology. Harper & Row, New York, pp. 98–125.

    Google Scholar 

  • Djagoun, C.A.M.S., Codron, D., Sealy, J., Mensah, G.A., Sinsin, B., 2013a. Stable carbon isotope analysis of the diets of West African bovids in Pendjari Biosphere Reserve (Northern Benin). South Afr. J. Wildl. Res. 43, 33–43.

    Article  Google Scholar 

  • Djagoun, C.A.M.S., Kassa, B., Mensah, G.A., Sinsin, B.A., 2013b. Seasonal habitat and diet partitioning between two sympatric bovid species in Pendjari Biosphere Reserve (Northern Benin): waterbuck and western kob. Afri. Zool. 48, 279–289.

    Article  Google Scholar 

  • Estes, R.D., 1991. The Behavior Guide to African Mammals, Including Hoofed Mammals, Carnivores Primates. University of California Press Berkeley.

  • Fisher, R.A., 1932. Statistical Methods for Research Workers, 4th edition. Oliver and Boyd, London.

    Google Scholar 

  • Fry, B., 2006. Stable Isotope Ecolog. Springer Science, NY, USA, 390 p. Gagnon, M., Chew, A., 2000. Dietary preferences in extant african bovidae. J. Mamm. 81, 490–511.

    Google Scholar 

  • Gordon, I.J., Illius, A.W., 1989. Resource partitioning by ungulates on the Isle of Rhum. Oecologia 79, 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Gotelli, N.J., Graves, G.R., 1996. Null Models in Ecology Smithsonian. Institution Press, Washington.

  • Haltenorth, T., 1988. The Collins Field Guide to the Mammals of Africa and Madagascar. S. Greene Press, Lexington Massachusetts.

    Google Scholar 

  • Henley, S.R., Ward, D., 2006. An evaluation of diet quality in two desert ungulates exposed to hyper-arid conditions. Afr. J. Range For. Sci. 23, 185–190.

    Article  Google Scholar 

  • Hofmann, R.R., 1989. Evolutionary steps of ecophysical adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443–457.

    Article  CAS  PubMed  Google Scholar 

  • Jarman, P.J., 1974. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–266.

    Article  Google Scholar 

  • Jenkins, K.J., Wright, R.G., 1988. Resource partitioning and competition among cervids in the northern Rocky Mountains. J. Appl. Ecol. 25, 11–24.

    Article  Google Scholar 

  • Kassa, B., Libois, R., Sinsin, B., 2007. Diet and food preference of the waterbuck (Kobus ellipsiprymnus defassa) in the Pendjari National Park, Benin. Afr. J. Ecol. 46, 303–310.

    Article  Google Scholar 

  • Kingdon, J., 1997. The Kingdon Field Guide to African Mammals. Academic Press, London and New York.

    Google Scholar 

  • Lawlor, L.R., 1980. Structure and stability in natural and randomly constructed competitive communities. Am. Nat. 116, 394–408.

    Article  Google Scholar 

  • Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, CM., Harrison, E., 2012. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562.

    Article  PubMed  Google Scholar 

  • Macdonald, D.W., 1984. The Encyclopedia of Mammals. Facts On File, New York. Müller, D.W.H., Codron, D., Meloro, C., Munn, A., Schwarm, A., Hummel, J., Clauss, M., 2013. Assessing the Jarman-Bell Principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores.

  • Assessing the Jarman. Comp. Biochem. Physiol 164, 129–140.

  • Murphy, B.P., Bowman, D.M.J.S., 2006. Kangaroo metabolism does not cause the relationship between bone collagen 815N and water availability. Funct. Ecol. 20, 1062–1069.

    Article  Google Scholar 

  • Mysterud, A., 2000. Diet overlap among ruminants in Fennoscandia. Oecologia 124, 130–137.

    Article  PubMed  Google Scholar 

  • Newsome, S.D., Martinez del Rio, C., Bearhop, S., Phillips, D.L., 2007. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436.

    Article  Google Scholar 

  • Pianka, E.R., 1986. Ecology and Natural History of Desert Lizards. Princeton University Press, Princeton.

    Book  Google Scholar 

  • Prins, H.H.T., Olff, H., 1998. Species richness of African grazer assemblages: towards a functional explanation. In: Newbery, D.M., Prins, H.H.T., Brown, N.D. (Eds.), Dynamics of Tropical Communities Symposia of the British Ecological Society. Blackwell Science, Oxford.

  • Prins, H.H.T., De Boer, W.F., Van Oeveren, H., Correia, A., Mafuca, J., Ollf, H., 2006. Co-existence and niche segregation of three small bovid species in southern Mozambique. Afri. J. Ecol. 44, 186–198.

    Article  Google Scholar 

  • Prins, H.H.T., 1996. Behaviour and ecology of the African buffalo. In: Social Inequality and Decision Making. Chapman and Hall, London.

    Book  Google Scholar 

  • Ritchie, M.E., Olff, H., 1999. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–560.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, C.T., Felicetti, LA, Sponheimer, M., 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144, 534–540.

    Article  PubMed  Google Scholar 

  • Rosenzweig, M., 1996. Species Diversity in Space and Time. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schuette, J.R., Leslie, D.M., Lochmiller, R.L., Jenks, J.A., 1998. Diets of hartebeest and roan antelope in Burkina Fasso: support of the long-faced hypothesis. J. Mammal. 79, 426–436.

    Article  Google Scholar 

  • Sealy, J.C, vander Merwe, N.J., Lee-Thorp, J.A., Lanham, J.L., 1987. Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Geoch. Cosmochim. Acta 51, 2707–2717.

    Article  Google Scholar 

  • Sinsin, B., Tehou, A.C., Daouda, I., Saidou, A., 2002. Abundance and species richness of larger mammals in Pendjari National Park in Benin. Mammalia 66, 369–380.

    Article  Google Scholar 

  • Sponheimer, M., Lee-Thorp, J.A., de Ruiter, D.J., Smith, J.M., van der Merwe, N.J., Reed, K., Grant, C.C., Ayliffe, L.K., Robinson, T.F., Heidelberger, C., Marcus, W., 2003. Diets of southern African Bovidae: stable isotope evidence. J. Mamm. 84, 471–479.

    Article  Google Scholar 

  • Stewart, K.M., Bowyer, R.T., Kie, J.G., Dick, B.L., Ben-David, M., 2003. Niche partitioning among mule deer, elk, and cattle: do stable isotopes reflect dietary niche? Ecoscience 10, 297–302.

    Google Scholar 

  • Stuart, C., Stuart, T., 1997. Field Guide to the Larger Mammals of Africa. Struik Publishers, Cape Town.

    Google Scholar 

  • Traill, L.W., 2004. Seasonal utilization of habitat by large grazing herbivores in semi-arid Zimbabwe. S. Afr. J. Wildl. Res. 34, 13–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chabi Adéyèmi Marc Sylvestre Djagoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djagoun, C.A.M.S., Codron, D., Sealy, J. et al. Isotopic niche structure of a mammalian herbivore assemblage from a West African savanna: Body mass and seasonality effect. Mamm Biol 81, 644–650 (2016). https://doi.org/10.1016/j.mambio.2016.09.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2016.09.001

Keywords

Navigation