Skip to main content
Log in

Individual variation of isotopic niches in grazing and browsing desert ungulates

  • Behavioral ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Ungulates often adjust their diet when food availability varies over time. However, it is poorly understood when and to what extent individuals change their diet and, if they do so, if all individuals of a population occupy distinct or similar dietary niches. In the arid Namibian Kunene Region, we studied temporal variations of individual niches in grazing gemsbok (Oryx gazella gazella) and predominantly browsing springbok (Antidorcas marsupialis). We used variation in stable C and N isotope ratios of tail hair increments as proxies to estimate individual isotopic dietary niches and their temporal plasticity. Isotopic dietary niches of populations of the two species were mutually exclusive, but similar in breadth. Isotopic niche breadth of gemsbok was better explained by within-individual variation than by between-individual variation of stable isotope ratios, indicating that gemsbok individuals were facultative specialists in using isotopically distinct local food resources. In contrast, inter- and intra-individual variations contributed similarly to the isotopic niche breadth of the springbok population, suggesting a higher degree of individual isotopic segregation in a more generalist ungulate. In both species, between-individual variation was neither explained by changes in plant primary productivity, sex, geographical position nor by group size. Within species, individual dietary niches overlapped partially, suggesting that both populations included individuals with distinct isotopic dietary niches. Our study provides the first evidence for isotopic dietary niche segregation in individuals of two distinct desert ungulates. Similar, yet isotopically distinct dietary niches of individuals may facilitate partitioning of food resources and thus individual survival in desert ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appleby MC (1980) Social rank and food access in red deer stags. Behaviour 74:294–309

    Article  Google Scholar 

  • Ayliffe LK, Cerling TE, Robinson T, West AG, Sponheimer M, Passey BH, Hammer J, Roeder BM, Dearing D, Ehleringer JR (2004) Turnover of carbon isotopes in tail hair and breadth CO2 of horses fed an isotopically varied diet. Oecologia 139:11–22

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn RV, Chen Z, Karowe DN, Spickard A (2004) C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob Change Biol 10(9):1565–1575

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-5. http://CRAN.R-project.org/package=lme4

  • Bender MM (1971) Variations in the δ13C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10(6):1239–1244

    Article  CAS  Google Scholar 

  • Bolnick DI, Svanbäack R, Fordyce JA, Yang LH, David JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Bolnick DI, Svanbäck R, Araùjo MS, Persson L (2007) Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci USA 104:10075–10079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Côté SD (2000) Determining social rank in ungulates: a comparison of aggressive interactions recorded at a bait site and under natural conditions. Ethology 106:945–955

    Article  Google Scholar 

  • Cerling TE, Harris JM (1999) Carbon isotope fractionation between diet and bioapatite in ungulates mammals and implications for ecological and paleoecological studies. Oecologia 120:347–363

    Article  Google Scholar 

  • Cerling TE, Wittemyer G, Ehleringer JR, Remien CH, Douglas-Hamilton I (2009) History of animals using isotope records (HAIR): a 6-year dietary investigation of one family of African elephants. Proc Natl Acad Sci USA 106:8093–8100

  • Cherel Y, Kernaléguen L, Richard P, Guinet C (2009) Whisker isotopic signature depicts migration patterns and multi-year intra-and inter-individual foraging strategies in fur seals. Biol Lett 5(6):830–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Child G, Le Riche JD (1969) Recent springbok treks (mass movements) in south-western Botswana. Mammalia 33(3):499–504

    Article  Google Scholar 

  • Chirima GJ, Owen-Smith N, Erasmus BNF, Parrini F (2013) Distributional niche of relatively rare sable antelope in a South African savanna: habitat versus biotic relationships. Ecography 36:068–079

    Article  Google Scholar 

  • Codron D, Lee-Thorp JA, Sponheimer M, Codron J (2007) Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle. S Afr J Wildl Res 37(2):117–125

    Article  Google Scholar 

  • Codron J, Codron D, Sponheimer M, Kirkman K, Duffy KJ, Raubenheimer EJ, Mélice JL, Grant R, Clauss M, Lee-thorp JA (2012) Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc R Soc Lond B 279:2433–2441

    Article  Google Scholar 

  • Codron J, Kirkman K, Duffy KJ, Sponheimer M, Lee-Thorp JA, Ganswindt A, Clauss M, Codron D (2013) Stable isotope turnover and variability in tail hairs of captive and free-ranging African elephants (Loxodonta Africana) reveal dietary niche differences within populations. Can J Zool 91:124–134

    Article  CAS  Google Scholar 

  • Dammhahn M, Kappeler PM (2014) Stable isotope analyses reveal dense trophic species packing and clear niche differentiation in a Malagasy primate community. Am J Phys Anthropol 153(2):249–259

    Article  PubMed  Google Scholar 

  • Darimont CT, Paquet PC, Reimchen TE (2009) Landscape heterogeneity and marine subsidy generate extensive intrapopulation niche diversity in a large terrestrial vertebrate. J Anim Ecol 78:126–133

    Article  PubMed  Google Scholar 

  • Dungan JD, Wright RG (2005) Summer diet composition of moose in Rocky Mountain National Park, Colorado. Alces 41:139–146

    Google Scholar 

  • Dunnett M, Lees P (2003) Trace element, toxin and drug elimination in hair with particular reference to the horse. Res Vet Sci 75(2):89–101

    Article  CAS  PubMed  Google Scholar 

  • Digital Atlas of Namibia (2002) Directorate of Environmental Affairs, Ministry of Environment and Tourism of Namibia. http://www.uni-koeln.de/sfb389/e/e1/download/atlas_namibia

  • du Toit JT (2003) Large herbivores and savanna heterogeneity. In: du Toit JT, Rogers KH, Biggs HC (eds) The Kruger experience: ecology and management of savanna heterogeneity. Island Press, Washington, DC, pp 292–309

    Google Scholar 

  • du Toit (2005) Sexual segregation in vertebrates. In: Ruckstuhl KE, Neuhaus (eds) Ecology of the two sexes. Cambridge University Press, Cambridge, pp 35–50

  • Estes RD (1991) Behaviour guide to African mammals: including hoofed mammals, carnivores, primates. University of California Press, Oakland

  • Estes JA, Riedman ML, Staedler MM, Tinker MT, Lyon BE (2003) Individual variation in prey selection by sea otters: patterns, causes, and implications. J Anim Ecol 72:144–155

    Article  Google Scholar 

  • Flaherty EA, Ben-David M (2010) Overlap and partitioning of the ecological and isotopic niches. Oikos 119:1409–1416

    Article  Google Scholar 

  • Gonfiantini R, Stichler W, Rozansky K (1995) Intercomparison materials for stable isotopes of light elements. International Atomic Energy Agency, Vienna, p 13

    Google Scholar 

  • Gordon IJ, Illius AW, Milne JD (1996) Sources of variations in the foraging efficiency of grazing ruminants. Funct Ecol 10:219–226

    Article  Google Scholar 

  • Hensman MC, Owen-Smith N, Parrini F, Bonyongo CM (2013) Resource use and the nutritional status of sable antelope in the Okavango Delta region of northern Bostwana. Afr J Ecol. doi:10.1111/aje.12113

    Google Scholar 

  • Hopcraft JGC, Anderson TM, Pérez-Villa S, Mayemba E, Olff H (2012) Body size and the division of niche space: food and predation differentially shape the distribution of Serengeti grazers. J Anim Ecol 81:201–2013

    Article  PubMed  Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  • Inger R, Ruxton GD, Newton J, Colhoun K, Robinson JA, Jackson AL, Bearhop S (2006) Temporal and intrapopulation variation in prey choice of wintering geese determined by stable isotope analysis. J Anim Ecol 75:1190–1200

    Article  PubMed  Google Scholar 

  • IUCN (2014) The IUCN Red List of threatened species. Version 2014.3. www.iucnredlist.org

  • Jackson AL, Inger R, Parnell AX, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602

    Article  PubMed  Google Scholar 

  • Jackson MC, Donohue I, Jackson AL, Britton JR, Harper DM, Grey J (2012) Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7:e31757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jarman PJ (1974) The social organization of antelope in relation to their ecology. Behaviour 48(3/4):215–267

    Article  Google Scholar 

  • Kim SL, Tinker MT, Estes JA, Koch PL (2013) Ontogenetic and among-individual variation in foraging strategies of northeast pacific white sharks based on stable isotope analysis. PLoS One 7(9):e45068

    Article  Google Scholar 

  • Lehmann D, Mfune JKE, Gewers E, Cloete J, Brain C, Voigt CC (2013) Dietary plasticity of generalist and specialist ungulates in the Namibian desert: a stable isotopes approach. PLoS One 8(8):e72190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindström J (1999) Early development and fitness in birds and mammals. Trends Ecol Evol 14(9):343–348

    Article  PubMed  Google Scholar 

  • Macdonald DW (1983) The ecology of carnivore social behaviour. Nature 301:379–384

    Article  Google Scholar 

  • Matich P, Heithaus MR, Layman CA (2010) Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J Anim Ecol 80:294–305

    Article  PubMed  Google Scholar 

  • del Rio MC, Sabat P, Anderson-Sprecher R, Gonzalez SP (2009) Dietary and isotopic specialization: the isotopic niche of three Cinclodes ovenbirds. Oecologia 161(149):159

    Google Scholar 

  • McEachern BM, Eagles-Smith AC, Efferson CM, Van Vuren DH (2006) Evidence for local specialization in a generalist mammalian herbivore Neotoma fuscipes. Oikos 113(3):440–448

    Article  Google Scholar 

  • Murray IW, Wolf BO (2013) Desert tortoise (Gopherus agassizii) dietary specialization decreases across a precipitation gradient. PloS one 8(6):e66505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Namibia Association of CBNRM Support Organizations NACSO (2012) http://www.nacso.org.na/index.php

  • Newsome SD, del Rio CM, Bearhop S, Phillips DL (2007) A niche for isotope ecology. Front Ecol Environ 5:429–436

    Article  Google Scholar 

  • Newsome SD, Tinker MT, Monson DH, Oftedal OT, Ralls K, Staedler MM, Fogel ML, Estes JA (2009) Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 90:961–974

    Article  PubMed  Google Scholar 

  • Newsome SD, Yeakel JD, Wheatley PV, Tinker MT (2012) Tools for quantifying isotopic niche space and dietary variation at the individual and population level. J Mammal 93(2):329–341

    Article  Google Scholar 

  • Owen-Smith N (2008) Effects of temporal variability in resources on foraging behaviour. In: Prins HHT, Van Langevelde F (eds) Resource ecology: spatial and temporal dynamics of foraging. Springer, Dordreht, pp 159–181

  • Owen-Smith N, Le Roux E, Macandza V (2013) Are relatively rare antelope narrowly selective feeders? A sable antelope and zebra comparison. J Zool. doi:10.1111/jzo.12058

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29(1):379–414

    Article  CAS  Google Scholar 

  • Parnell AC, Jackson A (2013) SIAR: stable isotope analysis in R. R package version 4.2. Available at http://CRAN.R-project.org/package=siar-project.org/package=siar

  • Quevedo M, Svanbäck R, Eklov P (2009) Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90:2263–2274

    Article  PubMed  Google Scholar 

  • Remien CH, Adler FR, Chesson LA, Valenzuela LO, Ehleringer JR, Cerling TE (2014) Deconvolution of isotope signals from bundles of multiple hairs. Oecologia 175(3):781–789

    Article  PubMed  Google Scholar 

  • Roughgarden J (1972) Evolution of niche width. Am Nat 106:683–718

    Article  Google Scholar 

  • Ruckstuhl KE, Festa-Bianchet M, Jorgenson JT (2003) Bite rates in Rocky Mountain bighorn sheep (Ovis canadensis): effects of season, age, sex and reproductive status. Behav Ecol Sociobiol 54:167–173

    Google Scholar 

  • Saitoh M, Uzuka M, Sakamotot M, Kobory T (1969) Rate of hair growth. In: Montagna W, Dobson RL (eds) Hair growth. Pergamon, Oxford, pp 183–201

    Google Scholar 

  • Schwertl M, Matthew C, Auerswald K, Schnyder H, Crook K (2003) Isotopic composition of cow tail switch hair as an information archive of the animal environment. In: Proceedings of the New Zealand Grassland Association, vol 65. New Zealand Grassland Association, pp 147–152

  • Sih A, Christiansen B (2001) Optimal diet theory: when does it work, and when and why does it fail? Anim Behav 61:379–390

    Article  Google Scholar 

  • Skinner JD, Chimimba CT (2005). The mammals of the southern African sub-region. Oxford University Press, Oxford

  • Slater C, Preston T, Weaver LT (2001) Stable isotopes and the international system of units. Rapid Commun Mass Spectrom 15:1270–1273

    Article  CAS  PubMed  Google Scholar 

  • Sponheimer M, Grant CC, de Ruiter DJ, Lee-Thorp JA, Codron DM, Codron J (2003) Diets of impala from Kruger National Park: evidence from stable carbon isotopes. Koedoe 46(1):101–106

    Article  Google Scholar 

  • Spalinger DE, Hobbs NT (1992) Mechanisms of foraging in mammalian herbivores: new models of functional response. Am Nat 140:325–348

    Article  CAS  PubMed  Google Scholar 

  • Sutoh M, Koyama T, Yoneyama T (1987) Variations of natural 15N abundances in the tissues and digesta of domestic animals. Radioisotopes 36(2):74

    Article  CAS  PubMed  Google Scholar 

  • Svanbäck R, Persson L (2004) Individual diet specialization, niche width, and population dynamics: implications for trophic polymorphisms. J Anim Ecol 73:973–982

    Article  Google Scholar 

  • Thaker M, Vanak AT, Owen CR, Ogden MB, Niemann SM, Slotow R (2011) Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology 92(2):398–407

    Article  PubMed  Google Scholar 

  • Tieszen LL, Boutton TW (1989) Stable carbon isotopes in terrestrial ecosystem research. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, New York, pp 167–195

  • Tieszen LL, Senyimba MM, Imbamba SK, Troughton JH (1979) The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37(3):337–350

    Article  Google Scholar 

  • Urton EJM, Hobson KA (2005) Intrapopulation variation in grey wolf isotope (δ15N and δ13C) profiles: implications for the ecology of individuals. Oecologia 145:317–326

    Article  PubMed  Google Scholar 

  • van de Pol M, Wright J (2009) A simple method for distinguishing within- versus between-subject effects using mixed models. Anim Behav 77:753–758

    Article  Google Scholar 

  • Vander Zanden HB, Bjomdal KA, Reich KJ, Bolten AB (2010) Individual specialists in a generalist population: results from a long-term stable isotope series. Biol Lett 6(5):711–714

    Article  PubMed Central  PubMed  Google Scholar 

  • Voigt CC, Matt F, Michener R, Kunz TH (2003) Low turnover rates of carbon isotopes in tissues of two nectar-feeding bat species. J Exp Biol 206(8):14191427

    Article  Google Scholar 

  • Watts DP (1984) Composition and variability of mountain gorilla diets in the central Virungas. Am J Primatol 7(4):323–356

    Article  Google Scholar 

  • West AG, Ayliffe LK, Cerling TE, Robinson TF, Karren B, Dearing MD, Eheleringer JR (2004) Short-term diet changes revealed using stable carbon isotopes in horsetail-hair. Funct Ecol 18:616–622

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to the Ministry of Environment and Tourism of Namibia for granting us research permits (nos. 1534/2010 and 1676/2012). We are very grateful to the Torra Community-based Conservancy and its members for allowing this study to be performed on their communal territory. We thank Wilderness Safari Namibia for support in the field with logistics and field vehicle maintenance. We are thankful to the team of Damaraland Camp for assisting with logistics, especially Pascolena Florry, Maggie Vries, Efreida Hebach and Johann Cloete. We thank Anja Luckner, Karin Sörgel and Doris Fichte for preparing and analysing the samples in the stable isotope laboratory. We are grateful to Alexandre Courtiol for statistical advice. We thank Emilia Haimbili from the University of Namibia for assisting in data collection. We thank Ortwin Aschenborn, Bettina Wachter and Joerg Melzheimer for logistical advice and support in the field. We thank Norman Owen-Smith for providing useful comments. This study was approved by the Institutional Committee for Ethics and Animal Welfare of the IZW (no. 2009-10-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lehmann.

Additional information

Communicated by Peggy Ostrom.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 709 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehmann, D., Mfune, J.K.E., Gewers, E. et al. Individual variation of isotopic niches in grazing and browsing desert ungulates. Oecologia 179, 75–88 (2015). https://doi.org/10.1007/s00442-015-3335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3335-1

Keywords

Navigation