Skip to main content
Log in

Timing the evolutionary history of tent-making bats, genus Uroderma (Phyllostomidae): A biogeographic context

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Geological events, such as the rising of the Andes and the completion of the Isthmus of Panama (linking North and South America) have induced the end or the beginning of geographical barriers, as well as the establishment of environmental conditions that can limit or extend species’ distribution. These events seem to be related with the diversification of the tent-making bats, genus Uroderma (Chiroptera: Phyllostomidae). In the present study, different methodological approaches were applied to reconstruct the evolutionary history of Uroderma, through the estimation of a diversification time-frame, dispersal routes, and to determine the origin of its hybrid zone in Central America. We analyzed sequences from the mitochondrial gene Cytochrome b (Cyt-b). Phylogenetic relationships between species were estimated using maximum parsimony and Bayesian inference approaches, we reconstructed the biogeographic history of the genus, divergence times for the splitting events were determined, and demographic history of species involved in the hybrid zone (U. convexum and U. davisi) was estimated. The Central Andes was identified as a center of diversification for Uroderma during the Late Miocene (5.8–3.7 Mya), and Central America for the most recent common ancestor of U. convexum and U. bakeri + U. davisi, which migrated though a stepping stone model before the completion of the Isthmus of Panama (3.8 Mya; 95%, Higuest Posterior Distribution [HPD] 4.6–2.9 Mya); Central America was recovered as the distribution of MRCA of U. bakeri and U. davisi, and its split dated to the late Pliocene - Quaternary (2.8 Mya, 4–1.4 Mya). The diversification of Uroderma is a series of recent events that involved dispersal episodes across extreme barriers (Panama Canal and the highlands of the northern Andes), with potential for population expansion and retreats, explaining the current distribution of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, R., Albach, D., Ansell, S., Arntze, J.W., Baird, S.J.E., Bierne, N., et al., 2013. Hybridization and speciation. J. Evol. Biol. 26, 229–246.

    Article  CAS  PubMed  Google Scholar 

  • Almendra, A.L., Rogers, D.S., 2012. Biogeography of Central American mammals: patterns and processes. In: Patterson, B.D., Costa, LP. (Eds.), Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals. University of Chicago Press, Chicago, pp. 203–229.

    Chapter  Google Scholar 

  • Alvarez, J., 1981. Determinación de edad Rb/Sren rocas del Macizo de Garzón, Cordillera Oriental de Colombia. Geol. Norandina 4, 31–38.

    Google Scholar 

  • Baker, R.J., López, G., 1970. Chromosomal variation in bats of the genus Uroderma (Phyllostomidae). J. Mammal. 57, 786–789.

    Article  Google Scholar 

  • Baker, R.J., Bass, R.A., Johnson, M.A., 1979. Evolutionary implications of chromosomal homology in four genera of stenodermatine bats (Phyllostomydae: Chiroptera). Evolution 33, 220–226.

    Article  PubMed  Google Scholar 

  • Baker, R.J., Bininda-Emons, O.R.P., Mantilla-Meluk, H., Porter, C.A., Van Den Bussche, A., 2012. Molecular timescale of diversification of feeding strategy and morphology in New World leaf-nosed bats (Phyllostomidae): a phylogenetic perspective. In: Gunnell, G.F., Simmons, N.B. (Eds.), Evolutionary History of Bats: Fossils, Molecules and Morphology. Cambridge University Press, Cambridge, pp. 385–409.

    Chapter  Google Scholar 

  • Baker, R.J., 1981. Chromosome flow between chromosomally characterized taxa of Volant mammal, Uroderma bilobatum (Chiroptera: Phyllostomidae). Evolution 35, 296–305.

    Article  PubMed  Google Scholar 

  • Barton, N.H., 1982. The structure of the hybrid zone in Uroderma bilobatum (Chiroptera: Phyllostomidae). Evolution 36, 863–866.

    Article  CAS  PubMed  Google Scholar 

  • Chapman, F.M., 1926. The distribution of bird-life in Ecuador: a contribution to a study of the origin of Andean bird-life. Bull. Am. Mus. Nat. His. 55, 1–784.

    Google Scholar 

  • Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, W.B., 1968. Review of the genus Uroderma (Chiroptera). J. Mammal. 49, 676–698.

    Article  Google Scholar 

  • Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214, https://doi.org/10.1186/1471-2148-7-214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont, E.R., Samadevam, K., Grosse, I., Warsi, O.M., Baird, B., Davalos, L.M., 2014. Selection for mechanical advantage underlies multiple cranial optima in New World Leaf-Nosed Bats. Evolution 68, 1436–1449.

    Article  PubMed  Google Scholar 

  • Excoffier, L., Laval, G., Schneider, S., 2005. Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50.

    Article  CAS  Google Scholar 

  • Fu, Y., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garver, J.I., Reiners, P.W., Walker, L.J., Ramage, J.M., Perry, S.E., 2005. Implications for timing of Andean uplift from thermal resetting of radiation-damaged Zircon in the cordillera Huayhuash, Northern Peru. J. Geol. 113, 117–138.

    Article  CAS  Google Scholar 

  • Gentry, A.H., 1989. Speciation in tropical forests. In: Holm-Nielsen, L.B., Nielsen, I.C., Balslev, H. (Eds.), Tropical Forests: Botanical Dynamics, Speciation and Diversity. Academic Press, San Diego, CA, pp. 113–134.

  • Gernhard, T., 2008. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778.

    Article  PubMed  Google Scholar 

  • Greenbaum, I.F., 1981. Genetic interactions between hybridizing cytotypes of the tent-making bat (Uroderma bilobatum). Evolution 35, 305–320.

    Google Scholar 

  • Gregory-Wodzicki, K.M., 2000. Uplift history of the Central and Northern Andes: a review. Geol. Soc. Am. Bull. 112, 1091–1105.

    Article  Google Scholar 

  • Haffer, J., 1969. Speciation in Amazonian forest birds. Science 165, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Hafner, J.C., 1982. Genetic considerations at a contact zone of Uroderma bilobatum (Chiroptera: Phyllostomidae). Evolution 36, 852–862.

    Article  PubMed  Google Scholar 

  • Harris, A.J., Xiang, Q.Y., 2009. Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to dispersal-vicariance analysis and a case using Aesculus L. (Sapindaceae) including fossils. J. Syst. Evol. 47, 349–368.

    Article  Google Scholar 

  • Ho, S.Y.W., 2007. Calibrating molecular estimates of substitution rates and divergence times in birds. J. Avian Bio. 38, 409–414.

    Article  Google Scholar 

  • Hoffmann, F.G., Owen, J.G., Baker, R.J., 2003. mtDNA perspective of chromosomal diversification and hybridization in Peters’ tent-making bat (Uroderma bilobatum: Phyllostomidae). Mol. Ecol. 12, 2981–2993.

    Article  CAS  PubMed  Google Scholar 

  • Hooghiemstra, H., van der Hammen, T., 1998. Neogene and ouaternary development of the Neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth Sci. Rev. 44, 147–183.

    Article  Google Scholar 

  • Kawata, M., 2001. The influence of neighborhood size and habitat shape on the accumulation of deleterious mutations. J. Theor. Biol. 211, 187–199.

    Article  CAS  PubMed  Google Scholar 

  • Lamm, K.S., Redelings, B.D., 2009. Reconstructing ancestral ranges in historical biogeography: properties and prospects. J. Syst. Evol. 47, 369–382.

    Article  Google Scholar 

  • Larsen, P.A., Marchán-Rivadeneira, R., Baker, R.J., 2013. Speciation dynamics of the fruit-eating bats (Genus Artibeus): with evidence of ecological divergence in central american populations. In: Adams, R.A., Pedersen, S.C. (Eds.), Bat Evolution, Ecology, and Conservation. Springer, New York, pp. 315–339, https://doi.org/10.1007/978-1-4614-7339-8_16.

    Chapter  Google Scholar 

  • Lessa, E.P., Cook, J.A., Patton, J.L., 2003. Genetic footprints of demographic expansion in North America, but not Amazonia, during the late quaternary. Proc. Natl. Acad. Sci. U. S. A. 100, 100331–103334.

    Article  CAS  Google Scholar 

  • Lessa, E.P., 1990. Multidimensional analysis of geographic genetic structure. Syst. Zool. 39, 242–252.

    Article  Google Scholar 

  • Lessios, H.A., 1998. The first stage of speciation as seen in organisms separated by the Isthmus of Panama. In: Howard, D.J., Berlocher, S.H. (Eds.), Endless Forms: Species and Speciation. Oxford University Press, New York, pp. 186–201.

    Google Scholar 

  • Librado, P., Rozas, J., 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    CAS  PubMed  Google Scholar 

  • Linares, O.J., 1968. Quirópteros subfósiles encontrados en las cuevas venezolanas: parte 1. Bol. Soc. Venezolana Espeleol. 1, 119–145.

    Google Scholar 

  • Lundberg, J.G., 1997. Freshwater fishes and their paleobiotic implications. In: Kay, F.R., Madden, R.H., Cifelli, R.L., Flynn, J.J. (Eds.), Vertebrate Paleontology in the Neotropics: The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, DC, pp. 67–91.

    Google Scholar 

  • Mantilla-Meluk, H., 2013. Subspecific variation: an alternative biogeographic hypothesis explaining variation in coat color and cranial morphology in Lagothrix lugens (Primates: Atelida). Primate Conserv. 26, 33–48.

    Article  Google Scholar 

  • Mantilla-Meluk, H., 2014. Defining species and species boundaries in Uroderma (Chiroptera: Phyllostomidae) with a description of a new species. Occas. Papers Mus. Texas Tech Univ. 325, 1–25.

    Google Scholar 

  • Owen, J.G., Baker, R.J., 2001. The Uroderma bilobatum (Chiroptera: Phyllostomidae) cline revisited. J. Mammal. 82, 1102–1113.

    Article  Google Scholar 

  • Pacheco, V., Patterson, B.D., 1992. Systematics and biogeographic analysis of four species of Sturnira (Chiroptera: Phyllostomidae), with emphasis on Peruvian forms. In: Young, K.R., Valencia, N. (Eds.), Biogeografía, Ecología y Conservación del Bosque Montano en el Perú. Memorias del Museo de Historia Natural. Universidad Nacional Mayor de San Marcos, Lima, pp. 57–81.

    Google Scholar 

  • Picard, D., Sempere, T., Plantard, O., 2008. Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa. Earth Planet. Sci. Lett. 271, 326–336.

    Article  CAS  Google Scholar 

  • Pigot, A.L., Phillimore, A.B., Owens, I.P.F., Orme, C.D.L., 2010. The shape and temporal dynamics of phylogenetic trees arising from geographic speciation. Syst. Biol. 59, 660–673.

    Article  PubMed  Google Scholar 

  • Pinto, CM., 2009. Genetic Diversity of the Common Vampire Bat Desmodus rotundus in Ecuador: Testing Cross-Andean Gene Flow. M.S. Thesis. Texas Tech University, Lubbock.

    Google Scholar 

  • Rambaut, A., Drummond, A., 2003. Tracer MCMC Trace Analysis Tool. University of Oxford, Oxford, UK https://doi.org/evolve.zoo.ox.ac.uk/software.html.

  • Ramos-Onsins, S.E., Rozas, J., 2002. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100.

    Article  CAS  PubMed  Google Scholar 

  • Rojas, D., Vale, A., Ferrero, V., Navarro, L., 2011. When did plants become important to leaf-nosed bats?: Diversification of feeding habits in the family Phyllostomidae. Mol. Ecol. 20, 2217–2228.

    Article  PubMed  Google Scholar 

  • Rull, V., 2008. Speciation timing and neotropical biodiversity: the tertiary-quaternary debate in the light of molecular phylogenetic evidence. Mol. Ecol. 17, 2722–2729.

    Article  PubMed  Google Scholar 

  • Schemske, D.W., 2002. Ecological and evolutionary perspectives on the origins of tropical diversity. In: Chazdon, R.L., Whitmore, T.C. (Eds.), Foundations of Tropical Forest Biology: Classic Papers with Commentaries. University of Chicago Press, Chicago, Illinois, USA, pp. 163–173.

    Google Scholar 

  • Slatkin, M., Hudson, R.R., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, B.T., Klicka, J., 2010. The profound influence ofthe Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33, 333–342, https://doi.org/10.1111/j.1600-0587.2009.06335.x.

  • Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velazco, P.M., Patterson, B.D., 2013. Diversification ofthe Yellow-shouldered bats, Genus Sturnira (Chiroptera, Phyllostomidae), in the New World tropics. Mol. Phylogenet. Evol. 68, 683–698.

    Article  PubMed  Google Scholar 

  • Weigend, M., 2002. Observations on the biogeography of the Amotape-Huancabamba zone in northern Peru. Bot. Rev. 68, 38–54.

    Article  Google Scholar 

  • Winger, B.M., Bates, J.M., 2015. The tempo of trait divergence in geographic isolation: avian speciation across the Marañon Valley of Peru. Evolution 69, 772–787, https://doi.org/10.1111/evo.12607.

    Article  PubMed  Google Scholar 

  • Yu, Y., Harris, A.J., He, X.J., 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 56, 848–850, https://doi.org/10.1016/j.ympev.2010.04.011.

    Article  PubMed  Google Scholar 

  • Yu, Y., Harris, A.J., Blair, C., He, X.J., 2015. RASP (Reconstuct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49.

    Article  PubMed  Google Scholar 

  • Yule, G.U., 1925. A mathematical theory of evolution, based on the conclusions of Dr. JC Willis, FRS: Phil. Trans. R. Soc. Lond. B Biol. Sci. 213, 21–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Cuadrado-Ríos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuadrado-Ríos, S., Mantilla-Meluk, H. Timing the evolutionary history of tent-making bats, genus Uroderma (Phyllostomidae): A biogeographic context. Mamm Biol 81, 579–586 (2016). https://doi.org/10.1016/j.mambio.2016.07.045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2016.07.045

Keywords

Navigation