Skip to main content

Speciation Dynamics of the Fruit-Eating Bats (Genus Artibeus): With Evidence of Ecological Divergence in Central American Populations

  • Chapter
  • First Online:
Bat Evolution, Ecology, and Conservation

Abstract

An increasing number of studies have identified complex diversification patterns of Neotropical faunal groups. One example of such complexity is found in bats of the widely distributed and locally abundant Neotropical genus Artibeus, wherein both allopatric and hybrid speciation events have been hypothesized. However, conflicting hypotheses regarding the timescale of diversification for Artibeus exist, and therefore, temporal inferences of the speciation events within the genus remain in doubt. We examine hypotheses regarding the chronology of diversification events within Artibeus. Our results indicate the most parsimonious time of origin for the genus was during the late Miocene to early Pliocene, with multiple speciation events during the early Pleistocene. Considering this evolutionary timescale, we revisit a century-old systematic debate regarding the status of Central American populations known as Artibeus lituratus intermedius. We present nuclear genetic data that indicate intermedius is distinct from lituratus and hypothesize that this distinction was ecologically driven, likely involved sympatry and reinforcement, and occurred during the late Pleistocene or early Holocene. Collectively, the data from Artibeus indicate that multiple speciation processes underlie extant levels of diversity within the genus. Our analyses provide further evidence for complex origins of the Neotropical fauna and contribute to a greater understanding of the natural processes underlying the origin of species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonelli A, Nylander JAA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci USA 106(24):9749–9754. doi:10.1073/pnas.0811421106

    Article  PubMed  CAS  Google Scholar 

  • Baker RJ, Bininda-Emonds ORP, Mantilla-Meluk H, Porter CA, Van Den Bussche RA (2012) Molecular time scale of diversification of feeding strategy and morphology in New World Leaf-Nosed Bats (Phyllostomidae): a phylogenetic perspective. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats: Fossils, Molecules and Morphology. Cambridge Studies in Morphology and Molecules–New Paradigms in Evolutionary Biology. Cambridge University Press, Cambridge, MA, pp 385–409

    Chapter  Google Scholar 

  • Baker RJ, Hoofer SR, Porter CA, Van Den Bussche RA (2003) Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occas Pap Tex Tech Univ Mus 230:1–32

    Google Scholar 

  • Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13(4):969–980. doi:10.1111/j.1365-294X.2004.02125.x

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B-Biol Sci 263(1377):1619–1626. doi:10.1098/rspb.1996.0237

    Article  Google Scholar 

  • Bininda-Emonds ORP (2007) Fast genes and slow clades: comparative rates of molecular evolution in mammals. Evol Bioinform Online 3:59–85

    PubMed  CAS  Google Scholar 

  • Brown KS (1976) Geographical patterns of evolution in Neotropical Lepidoptera. Systematics and derivation of known and new Heliconiini (Nymphalidae-Nymphalinae). J Entomol Ser B 44:201–242

    Google Scholar 

  • Butlin RK (2010) Population genomics and speciation. Genetica 138(4):409–418. doi:10.1007/s10709-008-9321-3

    Article  PubMed  Google Scholar 

  • Cabanne GS, d’Horta FM, Sari EHR, Santos FR, Miyaki CY (2008) Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): biogeography and systematics implications. Mol Phylogenet Evol 49(3):760–773. doi:10.1016/j.ympev.2008.09.013

    Article  PubMed  CAS  Google Scholar 

  • Collins LS, Coates AG, Berggren WA, Aubry MP, Zhang JJ (1996) The late Miocene Panama isthmian strait. Geology 24(8):687–690. doi:10.1130/0091-7613(1996)024<0687:tlmpis>2.3.co;2

    Article  Google Scholar 

  • Cortes-Ortiz L, Bermingham E, Rico C, Rodriguez-Luna E, Sampaio I, Ruiz-Garcia M (2003) Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Mol Phylogenet Evol 26(1):64–81. doi:10.1016/s1055-7903(02)00308-1

    Article  PubMed  CAS  Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30(1):71–86. doi:10.1046/j.1365-2699.2003.00792.x

    Article  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Cracraft J, Prum RO (1988) Patterns and processes of diversification – speciation and historical congruence in some neotropical birds. Evolution 42(3):603–620. doi:10.2307/2409043

    Article  Google Scholar 

  • Davey JW, Blaxter ML (2011) RADSeq: next-generation population genetics. Brief Funct Genomics 9(5):416–423. doi:10.1093/bfgp/elq31

    Google Scholar 

  • Davis WB (1984) Review of the large fruit-eating bats of the Artibeuslituratus” complex (Chiroptera: Phyllostomidae) in Middle America. Occas Pap Tex Tech Univ Mus 93:1–16

    Google Scholar 

  • Daza JM, Smith EN, Paez VP, Parkinson CL (2009) Complex evolution in the Neotropics: the origin and diversification of the widespread genus Leptodeira (Serpentes: Colubridae). Mol Phylogenet Evol 53(3):653–667. doi:10.1016/j.ympev.2009.07.022

    Article  PubMed  Google Scholar 

  • Ditchfield AD (2000) The comparative phylogeography of Neotropical mammals: patterns of intraspecific mitochondrial DNA variation among bats contrasted to nonvolant small mammals. Mol Ecol 9(9):1307–1318. doi:10.1046/j.1365-294x.2000.01013.x

    Article  PubMed  CAS  Google Scholar 

  • Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161(3):1307–1320

    PubMed  CAS  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214. doi:10.1186/1471-2148-7-214

    Article  PubMed  Google Scholar 

  • Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes – application to human mitochondrial-DNA restriction data. Genetics 131(2):479–491

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA-sequences: a maximum-likelihood approach. J Mol Evol 17(6):368–376. doi:10.1007/bf01734359

    Article  PubMed  CAS  Google Scholar 

  • Freygang CC (2006) Estudios filogeneticos dos morcegos filostomideos da Regiao Neotropical. PhD Dissertation, Universidade Federal do Rio Grande do Sul

    Google Scholar 

  • Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133(3):693–709

    PubMed  CAS  Google Scholar 

  • Genoways HH, Kwiecinski GG, Larsen PA, Pedersen SC, Larsen RJ, Hoffman JD, de Silva M, Phillips CJ, Baker RJ (2010) Bats of the Grenadine Islands, West Indies, and placement of Koopman’s line. Chiropt Neotrop 16:501–521

    Google Scholar 

  • Gentry AH (1982) Phytogeographic patterns as evidence for a Choco Refuge. In: Prance GT (ed) Biological diversification in the tropics. Proceedings of the fifth international symposium of the association for tropical biology, Columbia University Press, New York, pp 112–136

    Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: A review. Geol Soc Am Bull 112(7):1091–1105. doi:10.1130/0016-7606(2000)112<1091:uhotca>2.3.co;2

    Article  Google Scholar 

  • Guerrero JA, de Luna E, González D (2004) Taxonomic status of Artibeus jamaicensis triomylus inferred from molecular and morphometric data. J Mammal 85(5):866–874

    Article  Google Scholar 

  • Guerrero JA, Ortega J, González D, Maldonado JE (2008) Molecular phylogenetics and taxonomy of the fruit-eating bats of the genus Artibeus (Chiroptera: Phyllostomidae). In: Lorenzo C, Espinoza E, Ortega J (eds) Avances en el Estudio de los Mamiferos de México. Publicaciones Especiales, vol II. Asociación Mexicana de Mastozoología, A. C., México, D. F., pp 125–146

    Google Scholar 

  • Haffer J (1967) Speciation in Colombian forest birds west of the Andes. Am Mus Novit 2294:1–57

    Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    Article  PubMed  CAS  Google Scholar 

  • Hendry AP, Nosil P, Rieseberg LH (2007) The speed of ecological speciation. Funct Ecol 21(3):455–464. doi:10.1111/j.1365-2435.2006.01240.x

    Article  PubMed  Google Scholar 

  • Ho SYW (2007) Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol 38(4):409–414. doi:10.1111/j.2007.0908-8857.04168.x

    Google Scholar 

  • Hoffmann FG, Baker RJ (2001) Systematics of bats of the genus Glossophaga (Chiroptera: Phyllostomidae) and phylogeography in G. soricina based on the cytochrome-b gene. J Mammal 82(4):1092–1101. doi:10.1644/1545-1542(2001)082<1092:sobotg>2.0.co;2

    Article  Google Scholar 

  • Hoffmann FG, Baker RJ (2003) Comparative phylogeography of short-tailed bats (Carollia: Phyllostomidae). Mol Ecol 12(12):3403–3414. doi:10.1046/j.1365-294X.2003.02009.x

    Article  PubMed  CAS  Google Scholar 

  • Hoofer SR, Solari S, Larsen PA, Bradley RD, Baker RJ (2008) Phylogenetics of the fruit-eating bats (Phyllostomidae: Artibeina) inferred from mitochondrial DNA sequences. Occas Pap Tex Tech Univ Mus 277:1–15

    Google Scholar 

  • Hooghiemstra H, van der Hammen T (1998) Neogene and quaternary development of the neotropical rain forest: the forest refugia hypothesis, and a literature overview. Earth-Sci Rev 44(3–4):147–183. doi:10.1016/s0012-8252(98)00027-0

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. doi:10.1093/bioinformatics/17.8.754

    Article  PubMed  CAS  Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103(27):10334–10339. doi:10.1073/pnas.0601928103

    Article  PubMed  CAS  Google Scholar 

  • Jones KE, Bininda-Emonds ORP, Gittleman JL (2005) Bats, clocks, and rocks: diversification patterns in chiroptera. Evolution 59(10):2243–2255. doi:10.1554/04-635.1

    PubMed  Google Scholar 

  • Keigwin L (1982) Isotopic paleoceanography of the Caribbean and East pacific: role of Panama uplift in late neogene time. Science 217:350–353

    Article  PubMed  CAS  Google Scholar 

  • Kirby MX, Jones DS, MacFadden BJ (2008) Lower miocene stratigraphy along the Panama Canal and its bearing on the Central American Peninsula. PLoS One 3(7):e2791. doi:10.1371/journal.pone.0002791

    Article  PubMed  Google Scholar 

  • Lack JB, Pfau RS, Wilson GM (2010) Demographic history and incomplete lineage sorting obscure population genetic structure of the Texas mouse (Peromyscus attwateri). J Mammal 91(2):314–325. doi:10.1644/09-mamm-a-242.1

    Article  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  PubMed  CAS  Google Scholar 

  • Larsen PA, Hoofer SR, Bozeman MC, Pedersen SC, Genoways HH, Phlllips CJ, Pumo DE, Baker RJ (2007) Phylogenetics and phylogeography of the Artibeus jamaicensis complex based on cytochrome-b DNA sequences. J Mammal 88(3):712–727. doi:10.1644/06-mamm-a-125r.1

    Article  Google Scholar 

  • Larsen PA, Marchan-Rivadeneira MR, Baker RJ (2010a) Taxonomic status of Andersen’s fruit-eating bat (Artibeus jamaicensis aequatorialis) and revised classification of Artibeus (Chiroptera: Phyllostomidae). Zootaxa 2648:45–60

    Google Scholar 

  • Larsen PA, Marchan-Rivadeneira MR, Baker RJ (2010b) Natural hybridization generates mammalian lineage with species characteristics. Proc Natl Acad Sci USA 107(25):11447–11452. doi:10.1073/pnas.1000133107

    Article  PubMed  CAS  Google Scholar 

  • Lessa EP, Cook JA, Patton JL (2003) Genetic footprints of demographic expansion in North America, but not Amazonia, during the late quaternary. Proc Natl Acad Sci USA 100(18):10331–10334. doi:10.1073/pnas.1730921100

    Article  PubMed  CAS  Google Scholar 

  • Leyden BW (1984) Guatemalan forest synthesis after Pleistocene aridity. Proc Natl Acad Sci USA 81(15):4856–4859. doi:10.1073/pnas.81.15.4856

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452. doi:10.1093/bioinformatics/btp187

    Article  PubMed  CAS  Google Scholar 

  • Lim BK (1997) Morphometric differentiation and species status of the allopatric fruit-eating bats Artibeus jamaicensis and A. planirostris in Venezuela. Stud Neotrop Fauna E 32(2):65–71. doi:10.1080/01650521.1997.9709606

    Google Scholar 

  • Lim BK, Engstrom MD, Lee TE, Patton JC, Bickham JW (2004) Molecular differentiation of large species of fruit-eating bats (Artibeus) and phylogenetic relationships based on the cytochrome-b gene. Acta Chiropterol 6(1):1–12

    Article  Google Scholar 

  • Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution. Version 4.0. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Mallet J, Beltran M, Neukirchen W, Linares M (2007) Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol Biol 7:28. doi:10.1186/1471-2148-7-28

    Article  PubMed  Google Scholar 

  • Marchán-Rivadeneira MR, Larsen PA, Phillips CJ, Strauss RE, Baker RJ (2012) On the association between environmental gradients and skull size variation in the great fruit-eating bat, Artibeus lituratus (Chiroptera: Phyllostomidae). Biol J Linn Soc 105(3):623–634. doi:10.1111/j.1095-8312.2011.01804.x

    Article  Google Scholar 

  • Martins FM, Ditchfield AD, Meyer D, Morgante JS (2007) Mitochondrial DNA phylogeography reveals marked population structure in the common vampire bat, Desmodus rotundus (Phyllostomidae). J Zoolog Syst Evol Res 45(4):372–378. doi:10.1111/j.1439-0469.2007.00419.x

    Article  Google Scholar 

  • Marques-Aguiar SA (2007) Genus Artibeus Leach, 1821. In: Gardner AL (ed) Mammals of South America, vol 1. University of Chicago Press, Chicago, IL, pp 301–321

    Google Scholar 

  • Mavárez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M (2006) Speciation by hybridization in Heliconius butterflies. Nature 441(7095):868–871. doi:10.1038/nature04738

    Article  PubMed  Google Scholar 

  • Miller MP (2005) Alleles In Space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96(6):722–724. doi:10.1093/jhered/esi119

    Article  PubMed  CAS  Google Scholar 

  • Monmonier M (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 3:245–261

    Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563. doi:10.1146/annurev.ecolsys.31.1.533

    Article  Google Scholar 

  • Noonan BP, Gaucher P (2006) Refugial isolation and secondary contact in the dyeing poison frog Dendrobates tinctorius. Mol Ecol 15(14):4425–4435. doi:10.1111/j.1365-294X.2006.03074.x

    Article  PubMed  CAS  Google Scholar 

  • Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13(12):502–506. doi:10.1016/s0169-5347(98)01511-0

    Article  PubMed  CAS  Google Scholar 

  • Patten DR (1971) A review of the large species of Artibeus (Chiroptera: Phyllostomidae) from western South America. PhD Dissertation, Texas A&M University

    Google Scholar 

  • Patterson BD, Pacheco V, Ashley MV (1992) On the origins of the western slope region of endemism: systematics of fig eating bats, genus Artibeus. Memorias del Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (Lima) 21:189–205

    Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pennington RT, Prado DE, Pendry CA (2000) Neotropical seasonally dry forests and quaternary vegetation changes. J Biogeogr 27(2):261–273

    Article  Google Scholar 

  • Piperno DR, Jones JG (2003) Paleoecological and archaeological implications of a Late Pleistocene/Early Holocene record of vegetation and climate from the Pacific coastal plain of Panama. Quat Res 59(1):79–87. doi:10.1016/s0033-5894(02)00021-2

    Article  Google Scholar 

  • Porter CA, Baker RJ (2004) Systematics of Vampyressa and related genera of phyllostomid bats as determined by cytochrome-b sequences. J Mammal 85(1):126–132. doi:10.1644/bwg-110

    Article  Google Scholar 

  • Porter CA, Hoofer SR, Cline CA, Hoffmann FG, Baker RJ (2007) Molecular phylogenetics of the phyllostomid bat genus Micronycteris with descriptions of two new subgenera. J Mammal 88(5):1205–1215. doi:10.1644/06-mamm-a-292r.1

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14(9):817–818. doi:10.1093/bioinformatics/14.9.817

    Article  PubMed  CAS  Google Scholar 

  • Prance GT (1982) Forest refuges: evidence from woody angiosperms. In: Prance GT (ed) Biological diversification in the tropics. Proceedings of the fifth international symposium of the association for tropical biology, Columbia University Press, New York, pp 137–156

    Google Scholar 

  • Redondo RAF, Brina LPS, Silva RF, Ditchfield AD, Santos FR (2008) Molecular systematics of the genus Artibeus (Chiroptera: Phyllostomidae). Mol Phylogenet Evol 49(1):44–58. doi:10.1016/j.ympev.2008.07.001

    Article  PubMed  CAS  Google Scholar 

  • Rheindt FE, Christidis L, Cabanne GS, Miyaki C, Norman JA (2009) The timing of neotropical speciation dynamics: a reconstruction of Myiopagis flycatcher diversification using phylogenetic and paleogeographic data. Mol Phylogenet Evol 53(3):961–971. doi:10.1016/j.ympev.2009.09.001

    Article  PubMed  Google Scholar 

  • Rice AM, Rudh A, Ellegren H, Qvarnstrom A (2011) A guide to the genomics of ecological speciation in natural animal populations. Ecol Lett 14(1):9–18. doi:10.1111/j.1461-0248.2010.01546.x

    Article  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population-growth makes waves in the distribution of pairwise genetic-differences. Mol Biol Evol 9(3):552–569

    PubMed  CAS  Google Scholar 

  • Rull V (2008) Speciation timing and neotropical biodiversity: the tertiary-quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17(11):2722–2729. doi:10.1111/j.1365-294X.2008.03789.x

    Article  PubMed  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8(3):336–352. doi:10.1111/j.1461-0248.2004.00715.x

    Article  Google Scholar 

  • Santos JC, Coloma LA, Summers K, Caldwell JP, Ree R, Cannatella DC (2009) Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol 7(3):448–461. doi:10.1371/journal.pbio.1000056

    Article  CAS  Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammals species of the world: a taxonomic and geographic reference, 3rd edn. Johns Hopkins University Press, Baltimore, MD, pp 312–529

    Google Scholar 

  • Smith BT, Klicka J (2010) The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography 33(2):333–342. doi:10.1111/j.1600-0587.2009.06335.x

    Google Scholar 

  • Solari S, Hoofer SR, Larsen PA, Brown AD, Bull RJ, Guerrero JA, Ortega J, Carrera JP, Bradley RD, Baker RJ (2009) Operational criteria for genetically defined species: analysis of the diversification of the small fruit-eating bats, Dermanura (Phyllostomidae: Stenodermatinae). Acta Chiropterol 11(2):279–288. doi:10.3161/150811009x485521

    Article  Google Scholar 

  • Stadelmann B, Lin LK, Kunz TH, Ruedi M (2007) Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol 43(1):32–48. doi:10.1016/j.ympev.2006.06.019

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (* and other methods). Version 4.0b10. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Tajima F (1989) Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    PubMed  CAS  Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709):580–584. doi:10.1126/science.1105113

    Article  PubMed  CAS  Google Scholar 

  • Van Den Bussche RA, Hudgeons JL, Baker RJ (1998) Phylogenetic accuracy, stability, and congruence. Relationships within and among the New World bat genera Artibeus, Dermanura, and Koopmania. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington, DC, pp 59–71

    Google Scholar 

  • Velazco PM, Patterson BD (2008) Phylogenetics and biogeography of the broad-nosed bats, genus Platyrrhinus (Chiroptera: Phyllostomidae). Mol Phylogenet Evol 49(3):749–759. doi:10.1016/j.ympev.2008.09.015

    Article  PubMed  CAS  Google Scholar 

  • Webster D, Jones JK (1983) Artibeus hirsutus and Artibeus inopinatus. Mammal Species 199:1–3

    Article  Google Scholar 

  • Weir JT (2006) Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution 60(4):842–855

    PubMed  Google Scholar 

  • Wesselingh FP, Salo JA (2006) A Miocene perspective on the evolution of the Amazonian biota. Scripta Geol 133:439–458

    Google Scholar 

  • Wilson DE (1991) Mammals of the Tres-Marias Islands. Bull Am Mus Nat Hist 206:214–250

    Google Scholar 

Download references

Acknowledgments

We thank R. D. Bradley for his valuable discussions throughout the stages of our investigation. C. Blair, H. H. Genoways, S. C. Pedersen, C. D. Phillips, C. J. Phillips, R. E. Strauss, and P. M. Velazco provided helpful comments. We are grateful to H. J. Garner, K. McDonald, and J. P. Carrera of the Natural Science Research Laboratory of the Museum of Texas Tech University for assistance with loans of tissue material. This study would not have been possible were it not for the collecting efforts of members of the 2001 and 2004 Sowell Expeditions to Ecuador and Honduras. We thank all researchers who have worked to generate the molecular data used herein. Financial support was provided by J. Sowell, A. Brown, the Texas Tech University Biological Database Program, and the American Society of Mammalogists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Larsen .

Editor information

Editors and Affiliations

Appendices

Appendix A

Distribution maps of species of Artibeus following the data presented herein and in Webster and Jones (1983), Marques-Aguiar (2007), Genoways et al. (2010), Larsen et al. (2010a), and Larsen et al. (2010b). Species are arranged phylogenetically following Fig. 16.2. Plate 16.1: A. concolor, A. hirsutus, A. inopinatus, A. fraterculus, A. fimbriatus, A. aequatorialis, A. jamaicensis, and A. obscurus. Plate 16.2: A. lituratus, A. intermedius, A. schwartzi, A. planirostris, and A. amplus. The distribution of Artibeus sp. (sensu Redondo et al. 2008) remains to be determined.

Plate 16.1
figure 00168

Distribution maps of Artibeus concolor, A. hirsutus, A. inopinatus, A. fraterculus, A. fimbriatus, A. aequatorialis, A. jamaicensis, and A. obscurus

Plate 16.2
figure 00169

Distribution maps of Artibeus lituratus, A. intermedius, A. schwartzi, A. planirostris, and A. amplus

Appendix B

Specimens examined. Numbers associated with each specimen are enclosed in parentheses. Cytochrome-b sequences from Freygang (2006), Guerrero et al. (2004), Guerrero et al. (2008), Larsen et al. (2007), Larsen et al. (2010b), Redondo et al. (2008), and Van Den Bussche et al. (1998) and 16S ribosomal sequences from Hoofer et al. (2008). Distinct Brazilian cytochrome-b haplotypes from Redondo et al. (2008) were used in the mismatch distribution and Bayesian skyline plot analyses (GenBank accession numbers = EU160724–EU160833). TK = Tissue Number: Natural Science Research Laboratory of the Museum of Texas Tech University, Lubbock. GenBank accession numbers reported for all other sequences. * = used in AFLP analysis; † = used in molecular clock analyses, and ‡ = used in cytochrome-b haplotype network construction.

A. aequatorialis: Ecuador: El Oro (TK 135391*); Esmeraldas (TK 135701*), (TK 135702*), (TK 135905*), (TK 135906*); Guayas (TK 134602*); Loja (FJ179232†, FJ179186†, TK 135290*). A. concolor: Suriname: Sipaliwini (FJ179223†, FJ179173†). A. fraterculus: Ecuador: El Oro (TK 135408*), (TK 135226*), (TK 135760*); Guayas (DQ869389†, FJ179174†, TK 134686*), (TK 134950*), (TK 134947*). A. hirsutus: Mexico: Michoacan (FJ179226†, FJ179181†). A. inopinatus: Honduras: Valle (FJ179227†, FJ179177†, TK 101201*), (TK 101202*). A. intermedius: Costa Rica: Guanacaste (U66502‡). Honduras: Colon (TK 136293‡), (TK 136891*); Comayagua (TK 101269*), (AY684729, TK 101284*), (AY684730‡, TK 101285*), (TK 101938*), (TK 136052*‡), (TK 136027*); Copan (FJ179230‡, TK 101993*), (FJ179231); Valle (TK 101261*). Mexico: Morelos (AY144338‡), Veracruz (AY144339‡); Panama: Bocas del Toro (AY684737‡). A. jamaicensis: Jamaica, St. Ann’s Parish (DQ869480†, FJ179187†, TK 27682*), (TK 27686*), (TK 27691*). Honduras: Atlantida (TK 101763*), (TK 101381*); Copan (TK 101997*); Olancho (TK 102059*). A. lituratus: Brazil: Acre (EU160800‡); Amazonas (EU160761‡); Bahia (EU160725‡); Espirito Santo (EU160740‡), (EU160745‡), (EU160794‡); Maranhao (EU160827‡); Mato Grosso (EU160798‡); Minas Gerais (EU160724‡), (EU160799‡), (EU160814‡), (EU160815‡), (EU160817‡), (EU160822‡); Piaui (EU160829‡), (EU160830‡); Rio de Janeiro (AY684735‡), (EU160729‡), (EU160733‡); Santa Catarina (DQ985483‡), (DQ985485‡); Sao Paulo (AY684736‡), (EU160803‡), (EU160826‡). Ecuador: Esmeraldas (DQ869393‡), (TK 104643‡), (TK 104644*); Pastaza (FJ179233†‡, FJ179194†, TK 104112*), (AY684732‡), (AY684733‡), (TK 104333‡), (TK 104427‡), (TK 104441‡). Grenada: Carriacou (GQ861668‡). Guyana (TK 86512‡). Honduras: Atlantida (TK 101404*); Colon (TK 136258*), (TK 136293‡), (TK 136294*), (TK 136297*), (TK 136788*), (TK 136809*), (TK 136810*); Comayagua (TK 136075*). Paraguay: Dept. Canindeyu (TK 99645*); Dept. San Pedro (TK 56994*). Panama: Bocas del Toro (AY684731‡). St. Vincent and the Grenadines: Union Island (FJ179234‡, TK 128642*), (TK 128643*), (GQ861670‡). Suriname: Brokopondo (AY684740‡). Trinidad and Tobago: Trinidad (U66505‡). A. obscurus: Ecuador: Pastaza (TK 104001*), (TK 104310*). Suriname: Nickerie (FJ179185†); Para (U66506). Guyana (FJ179235†, FJ179184†). A. planirostris: Venezuela: Guarico (DQ869424†, FJ179189†, TK 15013*), Barinas (TK 19024*). Ecuador: Pastaza (TK 104413*), (TK 104414*), (TK 104406*), (TK 104410*), (TK 104411*), (TK 104419*). A. schwartzi: St. Vincent and the Grenadines: St. Vincent (DQ869524†, FJ179193†). Dermanura phaeotis: Mexico: Chiapas (FJ179245†, FJ179218†). D. rosenbergi: Ecuador: Esmeraldas (FJ179258†, FJ179219†). D. tolteca: Honduras: Comayagua (FJ179258†, FJ179216†). D. watsoni: Honduras: Colon (FJ179259†, FJ179205†). Ectophylla alba: Costa Rica: Limon (AY157033†, AY395811†). Enchisthenes hartii: Peru: Cusco (AY395838†); Huanuco (U66517†).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larsen, P.A., Marchán-Rivadeneira, M.R., Baker, R.J. (2013). Speciation Dynamics of the Fruit-Eating Bats (Genus Artibeus): With Evidence of Ecological Divergence in Central American Populations. In: Adams, R., Pedersen, S. (eds) Bat Evolution, Ecology, and Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7397-8_16

Download citation

Publish with us

Policies and ethics