Skip to main content
Log in

Genetic and alarm call diversity across scattered populations of speckled ground squirrels (Spermophilus suslicus)

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Alarm calls of ground squirrels are innate signals, showing substantial geographical variation across populations without the masking effects of sex and age- related variation. This makes them a convenient model for studying population genetic effects on the evolution of alarm communication. We compared data on the alarm call structure and the mitochondrial DNA (mtDNA) complete control region (C-region) (998–1002 bp) polymorphisminthe same 90 individual speckled ground squirrels (Spermophilus suslicus) across 6 populations (15 individuals per population), separated by distances from 12 to 1274 km. We calculated acoustic distances between each pair of populations based on acoustic variables of alarm calls, averaged for each individual using Euclidean distances of population centroids, in the space of canonical axes of discriminant function analysis. Genetic distances ranged of 0–1.1% within populations and of 0.5–4.9% between populations. Prominent differences were found between eastern and western populations separated by the Dnieper River. Both genetic and acoustic distances showed a significant positive correlation with geographical among populations. Positive correlation between acoustic and genetic distances did not reach significance. These results support effects of ecological selection on the alarm call variables rather than the genetic drift hypothesis. In addition, these results support the current taxonomic separation between subspecies of speckled ground squirrels differing in diploid chromosome sets 2n=34 (Spermophilus suslicus guttatus) and 2n=36 (Spermophilus suslicus odessanus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arriaga, G., Jarvis, E.D., 2013. Mouse vocal communication system: are ultrasounds learned or innate? Brain Lang. 124, 96–116, https://doi.org/10.1016/j.bandl.2012.10.002

    Google Scholar 

  • Arriaga, G., Zhou, E.P., Jarvis, E.D., 2012. Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One 7 (10), e46610, https://doi.org/10.1371/journal.pone.0046610

    Google Scholar 

  • Bensasson, D., Zhang, D.-X., Hartl, D.L., Hewitt, G.M., 2001. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol. Evol. 16, 314–321, https://doi.org/10.1016/S0169-5347(01)02151-6

  • Biedrzycka, A., Konopin´ ski, M.K., 2008. Genetic variability and the effect of habitat fragmentation in spotted suslik Spermophilus suslicus populations from two different regions, Conserv. Genet. 9, 1211–1221, https://doi.org/10.1007/ s10592-007-9442-8

    Article  Google Scholar 

  • Biedrzycka, A., Radwan, J., 2008. Population fragmentation and major histocompatibility complex variation in the spotted suslik, Spermophilus suslicus, Mol. Ecol. 17, 4801–4811, https://doi.org/10.1111/j.1365-294X.2008.03955.x.

    Article  CAS  PubMed  Google Scholar 

  • Boughman, J., 1997. Greater spear-nosed bats give group-distinctive calls. Behav. Ecol. Sociobiol. 40, 61–70, https://doi.org/10.1007/s002650050316.

  • Boughman, J., 1998. Vocal learning by greater spear-nosed bats, Proc. R. Soc. Lond. B 265, 227–233, https://doi.org/10.1098/rspb.1998.0286.

    Article  CAS  Google Scholar 

  • Briefer, E.F., McElligott, A.G., 2012. Social effects on vocal ontogeny in an ungulate, the goat, Capra hircus, Anim. Behav. 83, 991–1000, https://doi.org/10.1016/j.applanim.2011.05.012.

    Article  Google Scholar 

  • Campbell, P., Pasch, B., Pino, J.L., Crino, O.L., Phillips, M., Phelps, S.M., 2010. Geographic variation in the songs of neotropical singing mice: testing the relative importance of drift and local adaptation, Evolution 64, 1955–1972, https://doi.org/10.1111/j.1558-5646.2010.00962.x.

    PubMed  Google Scholar 

  • Crockford, C., Herbinger, I., Vigiland, L., Boesch, C., 2004. Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology 110, 221–243, https://doi.org/10.1111/j.1439-0310.2004.00968.x.

  • Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9 (8), 772, https://doi.org/10.1038/nmeth.2109.

    Google Scholar 

  • Denisov, V., Bielianin, A., Jordan, M., Rudek, Z., 1969. Karyological investigations of two species Citellus (Citellus pygmaeus Pall, and Citellus suslicus Guld.). Folia Biol. 17, 169–174.

    Google Scholar 

  • Eiler, K.C., Banack, S.A., 2004. Variability in the alarm call of golden-mantled ground squirrels (Spermophilus lateralis and S, saturatus). J. Mammal. 85, 43–50, https://doi.org/10.1644/1545-1542(2004)085<0043:VITACO>2.0.CO;2.

    Article  Google Scholar 

  • Ermakov, O.A., Surin, V.L., Titov, S.V., Tagiev, A.F., Luk’yanenko, A.V., Formozov, N.A., 2002. A molecular genetic study of hybridization in four species of ground squirrels (Spermophilus: Rodentia, Sciuridae), Russ. J. Genet. 38 (7), 796–809, https://doi.org/10.1023/A:1016395722664.

    Article  CAS  Google Scholar 

  • Ermakov, O.A., Titov, S.V., Savinetsky, A.B., Surin, V.L., Zborovsky, S.S., Lyapunova, E.A., Brandler, O.V., Formozov, N.A., 2006. Molecular genetic and palaeoecological arguments for conspecificity of little (Spermophilus pygmaeus) and Caucasian mountain (S, musicus) ground squirrels. Zool. Zh. 85 (12), 1474–1483.

    Google Scholar 

  • Ermakov, O.A., Surin, V.L., Titov, S.V., 2011. Genetic diversity and differentiation of the speckled ground squirrel inferred from sequencing of mtDNA control region, Izv. Penz. Gos. Pedagog. Univ. im. V.G. Belinskogo 25, 176–180.

    Google Scholar 

  • Ermakov, O.A., Simonov, E., Surin, V.L., Titov, S.V., Brandler, O.V., Ivanova, N.V., Borisenko, A.V., 2015. Implications of hybridizatio. NUMTs, and overlooked diversity for DNA barcoding of Eurasian ground squirrels. PLoS One 10 (1), e0117201, https://doi.org/10.1371/journal.pone.0117201.

    Google Scholar 

  • Excoffier, L., Lischer, H.E.L., 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Res. 10, 564–567.

    Article  Google Scholar 

  • Garner, A., Rachlow, J.L., Waits, L.P., 2005. Genetic diversity and population divergence in fragmented habitats: conservation of Idaho ground squirrels, Conserv. Genet. 6, 759–774, https://doi.org/10.1007/s10592-005-9035-3.

    Article  Google Scholar 

  • Gündüz, I., Jaarola, M., Tez, C., Yeniyurt, C., Polly, P.D., Searle, J.B., 2007. Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Sciurida, Rodentia) in Turkey, with a description of a new species, Mol. Phylogenet. Evol. 43, 916–935, https://doi.org/10.1016/j.ympev.2007.02.021.

    Article  PubMed  CAS  Google Scholar 

  • Hall, T.A., 1999. BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: paleontological statistics software package for education and data analysis, Palaeontol. Electron. 4, 1–9.

    Google Scholar 

  • Helgen, K.M., Cole, F.R., Helgen, L.E., Wilson, D.E., 2009. Generic revision in the holarctic ground squirrel genus Spermophilus, J. Mammal. 90, 270–305, https://doi.org/10.1644/07-MAMM-A-309.1.

    Article  Google Scholar 

  • Huber, S., Hoffmann, I.E., Millesi, E., Dittami, J., Arnold, W., 2001. Explaining the seasonal decline in litter size in European ground squirrels, Ecography 24, 205–211.

    Article  Google Scholar 

  • Hulová, Sˇ., Sedlácˇek, F., 2008. Population genetic structure of the European ground squirrel in the Czech Republic, Conserv. Genet. 9, 615–625, https://doi.org/10.1007/s10592-007-9378-z.

    Article  Google Scholar 

  • Janik, V.M., Slater, P.J.B., 1997. Vocal learning in mammals, Adv. Stud. Behav. 26, 59–99.

    Article  Google Scholar 

  • Jones, G., Ransome, R.D., 1993. Echolocation calls of bats are influenced by maternal effects and change over a lifetime, Proc. R. Soc. Lond. B 252, 125–128.

    Article  CAS  Google Scholar 

  • Knörnschild, M., Nagy, M., Metz, M., Mayer, F., von Helversen, O., 2010. Complex vocal imitation during ontogeny in a bat, Biol. Lett. 6, 156–159, https://doi.org/10.1098/rsbl.2009.0685.

    Article  PubMed  Google Scholar 

  • Knörnschild, M., Nagy, M., Metz, M., Mayer, F., von Helversen, O., 2012. Learned vocal group signatures in the polygynous bat Saccopteryx bilineata, Anim. Behav. 84, 761–769, https://doi.org/10.1016/j.anbehav.2012.06.029.

    Article  Google Scholar 

  • Koeppl, J.W., Hoffman, R.S., Nadler, C.F., 1978. Pattern analysis of acoustical behavior in four species of ground squirrels, J. Mammal. 59, 677–696, https://doi.org/10.2307/1380133.

    Article  Google Scholar 

  • Krebs, J.R., Davies, N.B., 1987. An Introduction to Behavioural Ecology. Blackwell Scientific Press, Oxford.

    Google Scholar 

  • Kryštufek, B., Bryja, J., Bužan, E.V., 2009. Mitochondrial phylogeography of the European ground squirrel, Spermophilus citellus, yields evidence on refugia for steppic taxa in the southern Balkans, Heredity 103, 129–135, https://doi.org/10.1038/hdy.2009.41.

    Article  PubMed  Google Scholar 

  • Lemasson, A., Gautier, J.-P., Hausberger, M., 2003. Vocal similarities and social bonds in Campbell’s monkey (Cercopithecus campbelli), C. R. Biol. 326, 1185–1193.

    Article  PubMed  Google Scholar 

  • Lemasson, A., Ouattara, K., Petit, E.J., Zuberbühler, K., 2011. Social learning of vocal structure in a nonhuman primate? BMC Evol. Biol. 11, 362, https://doi.org/10.1186/1471-2148-11-362.

    Google Scholar 

  • Lobkov, V.A., 1999. The Speckled Ground Squirrel of North-western Shores of the Black Sea: Biology and Population Dynamics. Astroprint, Odessa.

    Google Scholar 

  • Lyapunova, E.A., Vorontsov, N.N., 1970. Chromosomes and some issues of the evolution of the ground squirrel genus Citellus (Rodentia: Sciuridae), Experientia 26, 1033–1038.

    Article  Google Scholar 

  • Markova, A.K., 2000. The Mikulino (=Eemian) mammal faunas of the Russian Plain and Crimea, Neth. J. Geosci. 79, 293–301.

    Google Scholar 

  • Markova, A.K., Simakova, A.N., Puzachenko, A.Y., 2009. Ecosystems of Eastern Europe at the time of maximum cooling of the Valdai glaciation (24–18kyr BP) inferred from data on plant communities and mammal assemblages, Quat. Int. 201, 53–59, https://doi.org/10.1016/j.quaint.2008.05.020.

    Article  Google Scholar 

  • Matocha, K.G., 1975. Vocal Communication in Ground Squirrels, Genus Spermophilus. PhD Thesis. Graduate Faculty of Texas Tech University, pp. 67 https://doi.org/repositories.tdl.org/ttu-ir/handle/2346/16471.

    Google Scholar 

  • Matrosova, V.A., Volodin, I.A., Volodina, E.V., Babitsky, A.F., 2007. Pups crying bass: vocal adaptation for avoidance of age-dependent predation risk in ground squirrels? Behav, Ecol. Sociobiol. 62, 181–191, https://doi.org/10.1007/s00265-007-0452-9.

    Article  Google Scholar 

  • Matrosova, V.A., Volodin, I.A., Volodina, E.V., 2009. The short-term and long-term individuality in speckled ground squirrel alarm calls, J. Mammal. 90, 158–166, https://doi.org/10.1644/08-MAMM-A-032.1.

    Article  Google Scholar 

  • Matrosova, V.A., Volodin, I.A., Volodina, E.V., Vasilieva, N.A., 2010a. Stability of acoustic individuality in the alarm calls of wild yellow ground squirrels Spermophilus fulvus and contrasting calls from trapped and free-ranging callers. Naturwissenschaften 97, 707–715, https://doi.org/10.1007/s00114-010-0686-7.

  • Matrosova, V.A., Volodin, I.A., Volodina, E.V., Vasilieva, N.A., Kochetkova, A.A., 2010b. Between-year stability of individual alarm calls in the yellow ground squirrel Spermophilus fulvus. J. Mammal. 91, 620–627, https://doi.org/10.1644/09-MAMM-A-143.1.

  • Matrosova, V.A., Blumstein, D.T., Volodin, I.A., Volodina, E.V., 2011. The potential to encode sex, age and individual identity in the alarm calls of three species of Marmotinae, Naturwissenschaften 98, 181–192, https://doi.org/10.1007/s00114-010-0757-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matrosova, V.A., Pivanova, S.V., Savinetskaya, L.E., Volodin, I.A., Volodina, E.V., Shekarova, O.N., 2012a. The between-population variation of the alarm call in the speckled ground squirrel (Spermophilus suslicus, Rodentia, Sciuridae): effects of sex, age and body mass. Zool. Zh. 91, 453–463.

  • Matrosova, V.A., Schneiderová, I., Volodin, I.A., Volodina, E.V., 2012b. Species-specific and shared features in vocal repertoires of three Eurasian ground squirrels (genus Spermophilus). Acta Theriol. 57, 65–78, https://doi.org/10.1007/s13364-011-0046-9.

  • Matrosova, V.A., Savinetskaya, L.E., Shekarova, O.N., Pivanova, S.V., Rusin, M.Yu., Volodin, I.A., Volodina, E.V., Tchabovsky, A.V., 2014. Within- and between-population polymorphism of the mtDNA control region of the speckled ground squirrel (Spermophilus suslicus), Doklady Biol. Sci. 455, 143–148, https://doi.org/10.1134/S0012496614020197.

    Article  CAS  Google Scholar 

  • Nedosekin, V.Y., 2007. Current state of the speckled ground squirrel at the north of the Middle-Russian Hills. In: Sarychev, V.S. (Ed.), Ecological Research in Galichya Gora Reserve. Voronezh State University Press, Voronezh, pp. 133–135, Issue 1.

    Google Scholar 

  • Nevo, E., Heth, G., Beiles, A., Frankenberg, E., 1987. Geographic dialects in blind mole rats: role of vocal communication in active speciation, Proc. Natl. Acad. Sci. U. S. A. 84, 3312–3315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikol’skii, A.A., 1979. Species specificity of alarm call in sousliks (Citellus, Sciuridae) of Eurasia, Zool. Zh. 58, 1183–1194.

    Google Scholar 

  • Nikol’skii, A.A., Denisov, V.P., Stoiko, T.G., Formosov, N.A., 1984. The alarm call in F1 hybrids Citellus pygmaeus X C, suslicus (Sciuridae, Rodentia). Zool. Zh. 63, 1216–1225.

    Google Scholar 

  • Nikol’skii, A.A., Ermakov, O.A., Titov, S.V., 2007. Geographical variability of the little ground squirrel (Spermophilus pygmaeus): a bioacoustical analysis, Zool. Zh. 86, 1379–1388.

    Google Scholar 

  • Ochoa, A., Gasca, J., Ceballos, G.J., Eguiarte, L.E., 2012. Spatiotemporal population genetics of the endangered Perote ground squirrel (Xerospermophilus perotensis) in a fragmented landscape, J. Mammal. 93, 1061–1074, https://doi.org/10.1644/11-MAMM-A-371.1.

    Article  Google Scholar 

  • Říčanová, Š., Bryja, J., Cosson, J.F., Gedeon, C., Choleva, L., Ambros, M., Sedláček, F., 2011. Depleted genetic variation of the European ground squirrel in Central Europe in both microsatellites and the major histocompatibility complex gene: implications for conservation, Conserv. Genet. 12, 1115–1129, https://doi.org/10.1007/s10592-011-0213-1.

    Article  Google Scholar 

  • Říčanová, S., Koshev, Y., Říčan, O., Ćosicć, N., Ćirović, D., Sedláček, F., Bryja, J., 2013. Multilocus phylogeography of the European ground squirrel: cryptic interglacial refugia of continental climate in Europe, Mol. Ecol. 22, 4256–4369, https://doi.org/10.1111/mec.12382.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, A.R., 1995. Genetic evidence for a Pleistocene population explosion, Evolution 49, 608–615, https://doi.org/10.2307/2410314.

    PubMed  Google Scholar 

  • Rukstalis, M., Fite, J.E., French, J.A., 2003. Social change affects vocal structure in a callitrichid primate (Callitrix kuhlii), Ethology 109, 327–340, https://doi.org/10.1046/j.1439-0310.2003.00875.x.

    Article  Google Scholar 

  • Sanvito, S., Galimberti, F., Miller, E.H., 2007. Observational evidences of vocal learning in southern elephant seals: a longitudinal study, Ethology 113, 137–146, https://doi.org/10.1111/j.1439-0310.2006.01306.x.

    Article  Google Scholar 

  • Schneiderová, I., Policht, R., 2012a. Acoustic analysis of the alarm call of the Anatolian ground squirrel Spermophilus xanthoprymnus: a description and comparison with alarm calls of the Taurus S. taurensis and European S. citellus ground squirrels. Naturwissenschaften 99, 55–64, https://doi.org/10.1007/s00114-011-0870-4.

  • Schneiderová, I., Policht, R., 2012b. Acoustic analysis of alarm calls of the European ground squirrel (Spermophilus citellus) and the Taurus ground squirrel (S. taurensis) (Mammalia: Sciuridae). Zool. Anz. 251, 139–146, https://doi.org/10.1016/j.jcz.2011.07.005.

  • Schusterman, R.J., 2008. Vocal learning in mammals with special emphasis on pinnipeds. In: Oller, D.K., Gribel, U. (Eds.), The Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication. MIT Press, Cambridge, Massachusetts, pp. 41–70.

    Google Scholar 

  • Shekarova, O.N., Krasnova, E.D., Shcherbakov, A.V., Savinetskaya, L.E., 2003. Settlements of the speckled ground squirrel Spermophilus suslicus (Guldenstaedt, 1770) in the south of the Moscow (Zaraysky region), Bull. Mosc. Soc. Nat. 108, 9–16.

    Google Scholar 

  • Shekarova, O.N., Neronov, V.V., Savinetskaya, L.E., 2008. Speckled ground squirrel (Spermophilus suslicus): current distribution: population dynamics and conservation, Lynx (Praha) 39, 317–322.

    Google Scholar 

  • Sherman, P.W., 1985. Alarm calls of Belding’s ground squirrels to aerial predators: nepotism or selfpreservation? Behav, Ecol. Sociobiol. 17, 313–323, https://doi.org/10.1007/BF00293209.

    Article  Google Scholar 

  • Slimen, H.B., Gedeon, C.I., Hoffmann, I.E., Suchentrunk, F., 2012. Dwindling genetic diversity in European ground squirrels? Mamm, Biol. 77, 13–21, https://doi.org/10.1016/j.mambio.2011.10.001.

    Google Scholar 

  • Snowdon, C.T., Elowson, A.M., 1999. Pygmy marmosets modify call structure when paired, Ethology 105, 893–908, https://doi.org/10.1046/j.1439-0310.1999.00483.x.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28, 2731–2739, https://doi.org/10.1093/molbev/msr121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka, T., Sugiura, H., Masataka, N., 2006. Cross-sectional and longitudinal studies of the development of group differences in acoustic features of coo calls in two groups of Japanese macaques, Ethology 112, 7–21, https://doi.org/10.1111/j.1439-0310.2006.01103.x.

    Article  Google Scholar 

  • Tchabovsky, A.V., Babitsky, A.F., Savinetskaya, L.E., 2005. Variation in annual cycle and mortality in spotted souslik in relation to population density in the northernmost part of its range, Doklady Biol. Sci. 405, 455–457, https://doi.org/10.1007/s10630-005-0163-1.

    Article  CAS  Google Scholar 

  • Titov, S.V., Ermakov, O.A., Surin, V.L., Formozov, A.N., Kasatkin, M.V., Shilova, S.A., Shmyrov, A.A., 2005. Molecular genetic and bioacoustic diagnostics russet (Spermophilus major Pallas, 1778) and yellow (fulvus Lichtenstein, 1823) ground squirrels from mixed colony. Bull. Mosc. Soc. Nat. 110, 72–77.

    Google Scholar 

  • Townsend, S.W., Hollen, L.I., Manser, M.B., 2010. Meerkat close calls encode group-specific signatures, but receivers fail to discriminate, Anim. Behav. 80, 133–138, https://doi.org/10.1016/j.anbehav.2010.04.010.

    Article  Google Scholar 

  • Tyack, P.L., 1997. Development and social functions of signature whistles in bottlenose dolphins Tursiops truncatus, Bioacoustics 8, 21–46, https://doi.org/10.1080/09524622.1997.9753352.

    Article  Google Scholar 

  • Tyack, P.L., 2008. Convergence of calls as animals form social bonds, active compensation for noisy communication channels, and the evolution of vocal learning in mammals, J. Comp. Psychol. 122, 319–331, https://doi.org/10.1037/a0013087.

    Article  PubMed  Google Scholar 

  • Vasilieva, N.A., Tchabovsky, A.V., 2014. Timing is the only thing: reproduction in female yellow ground squirrels (Spermophilus fulvus), Can. J. Zool. 92, 737–747, https://doi.org/10.1139/cjz-2014-0084.

    Article  Google Scholar 

  • Volodin, I.A., 2005. Individuality of alarm calls in the spotted suslik (Spermophilus suslicus, Rodentia, Sciuridae), Zool. Zh. 84, 228–235.

    Google Scholar 

  • Volodin, I.A., Volodina, E.V., Lapshina, E.N., Efremova, K.O., Soldatova, N.V., 2014. Vocal group signatures in the goitred gazelle Gazella subgutturosa, Anim. Cognit. 17, 235–349, https://doi.org/10.1007/s10071-013-0666-3.

    Article  Google Scholar 

  • von Merten, S., Hoier, S., Pfeifle, C., Tautz, D., 2014. A role for ultrasonic vocalisation in social communication and divergence of natural populations of the house mouse (Mus musculus domesticus). PLoS One 9 (5), e97244, https://doi.org/10.1371/journal.pone.0097244.

    Book  Google Scholar 

  • Vorontsov, N.N., Lyapunova, E.A., 1970. Chromosomal numbers and speciation in ground-dwelling sciurids (Sciurudae: Xerinoe et Marmotinae) of Holarctic, Bull. Mos. Soc. Nat. 75, 112–126.

    Google Scholar 

  • Weiß, B.M., Ladich, F., Spong, P., Symonds, H., 2006. Vocal behavior of resident killer whale matrilines with newborn calves: the role of family signatures, J. Acoust. Soc. Am. 119, 627–635, https://doi.org/10.1121/1.2130934.

    Article  PubMed  Google Scholar 

  • Whorley, J.R., Alvarez-Castañeda, S.T., Kenagy, G.J., 2004. Genetic structure of desert ground squirrels over a 20-degree-latitude transect from Oregon through the Baja California peninsula, Mol. Ecol. 13, 2709–2720, https://doi.org/10.1111/j.1365-294X.2004.02257.x.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins, M.R., Seddon, N., Safran, R.J., 2013. Evolutionary divergence in acoustic signals: causes and consequences, Trends Ecol. Evol. 28, 156–166, https://doi.org/10.1016/j.tree.2012.10.002.

    Article  PubMed  Google Scholar 

  • Wilson, D.E., Reeder, D.M. (Eds.), 2005. Mammal Species of the World. A Taxonomic and Geographic Reference. , 3rd ed. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Woodland, D.J., Jafaar, Z., Knight, M.L., 1980. The pursuit deterrent function of alarm signals, Am. Nat. 115, 748–753.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera A. Matrosova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matrosova, V.A., Rusin, M.Y., Volodina, E.V. et al. Genetic and alarm call diversity across scattered populations of speckled ground squirrels (Spermophilus suslicus). Mamm Biol 81, 255–265 (2016). https://doi.org/10.1016/j.mambio.2016.01.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2016.01.001

Keywords

Navigation