Skip to main content
Log in

Now you see me, now you don’t: The locomotory activity rhythm of the Asian garden dormouse (Eliomys melanurus) from Saudi Arabia

  • Original Investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The locomotory activity rhythms of Asian garden dormice, Eliomys melanurus from Saudi Arabia were investigated under controlled laboratory conditions. Animals were maintained under different lighting conditions for a period of two weeks each. Dormice exhibited predominantly nocturnal activity during the light/dark (LD) (mean % nocturnal activity: 95.5 ± 0.9%) and dark/light (DL) (mean % nocturnal activity: 96.8 ± 0.7%) light cycles. All animals expressed free-running rhythms of locomotor activity when subjected to constant darkness (mean τ: 24h06 ± 0h09). Upon inversion of the LD cycle to DL, activity re-entrained to the new light cycle within 3 days. When the dark component of the day was lengthened to 8L:16D the active time increased significantly from 11h43 ± 0h05 to 13h43 ± 0h22. In contrast, when the dark component was shortened from 12L:12D to16L: 8D, the active time decreased significantly to 7h58 ± 0h04. No difference was apparent in the locomotor activity at 20 and 30 °C however, dormice became very inactive at 10 °C.

Overall, locomotor activity patterns of the Asian garden dormouse largely resemble those of other species of dormice. However, Asian garden dormice spent long periods of time inactive both during light and darkness, when exposed to an ambient temperature of 10 °C, which may be related to the dramatic and sudden change in temperature. This period of inactivity may reflect a bout of torpor or the entering into a state of hibernation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abulfatih, H.A., 1979. Vegetation of higher elevation of Asir, Saudi Arabia. Proc. Saudi Biol. Soc. 3, 139–148.

    Google Scholar 

  • Abulfatih, H.A., 1981. Wild plants of Abha and its surroundings. Proc. Saudi Biol. Soc. 5, 143–159.

    Google Scholar 

  • Amori, G., Aulagnier, S., Hutterer, R., Krystufek, B., Yigit, N., Mitsain, G., Palomo, L.J., 2008. Eliomys melanurus. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2, https://doi.org/www.iucnredlist.org

  • Aschoff, J., 1979. Circadian rhythms: influences of internal and external factors on the period measured in constant conditions. Z. Tierpsycol. 49, 225–249.

    Article  CAS  Google Scholar 

  • Aschoff, J., 1981. Free-running and entrained circadian rhythms. In: Aschoff, J. (Ed.), Handbook of Behavioural Neurobiology, vol. 4. Plenum Press, New York.

    Google Scholar 

  • Aschoff, J., Hoffmann, K., Pohl, H., Wever, R., 1975. Re-entrainment of circadian rhythms after phase-shifts of the zeitgeber. Chronobiologia 2, 23–78.

    CAS  PubMed  Google Scholar 

  • Bertolino, S., 2007. Microhabitat use by garden dormice during nocturnal activity. J. Zool. 272, 176–182.

    Article  Google Scholar 

  • BirdLife International, 2012. Important Bird Areas factsheet: Raydah escarpment, Downloaded from https://doi.org/www.birdlife.org (17.06.12).

  • Bright, P., Morris, P., 2006. Why are dormice rare? A case study in conservation biology. Mamal. Rev. 26, 157–187.

    Article  Google Scholar 

  • Bright, P., Morris, P., Wiles, N.J., 1996. Effects of weather and season month summer activity of dormice Muscardinus avellarius. J. Zool. 238, 521–530.

    Article  Google Scholar 

  • Cohen, R., Kronfeld-Schor, N., 2006. Individual variability and photic entrainment of circadian rhythms in golden spiny mice. Physiol. Behav. 87, 563–574.

    Article  CAS  PubMed  Google Scholar 

  • Daan, S., 1973. Periodicity of heterothermy in the garden dormouse, Eliomys quercinus (L). Neth. J. Zool. 23, 237–265.

    Article  Google Scholar 

  • Daan, S., Albrecht, U., Van der Horst, G.T.J., Illnerová, H., Roenneberg, T., Wehr, T.A., Scwartz, W.J., 2001. Assembling a clock for all seasons: are there M and E oscillators in the genes? J. Biol. Rhythms 16, 105–116.

    Article  CAS  Google Scholar 

  • Duma, I.I., Giurgiu, S., 2012. Circadian activity and nest use of Dryomys nitedula as revealed by infrared motion sensor cameras. Folia Zool. 61, 49–53.

    Article  Google Scholar 

  • Froy, O., 2007. The relationship between nutrition and circadian rhythms in mammals. Front. Neuroendocrinol. 28, 61–71.

    Article  CAS  PubMed  Google Scholar 

  • Gür, M.K., Bulut, Ş., Gür, H., Refinetti, R., 2013. Body temperature patterns and the use of torpor in an alpine glirid species, woolly dormouse. Acta Theriol., https://doi.org/dx.doi.org/10.1007/s13364-013-0154-159.

  • Haim, A., Rubal, A., 1995. Thermoregulation and rhythmicity in Eliomys melanurus in the Negev highlands, Israel. Hystrix 6, 209–216.

    Google Scholar 

  • Harrison, D.L., 1972. The Mammals of Arabia, Vol. 3 Lagomorpha and Rodentia. Ernest Benn. Ltd, London.

    Google Scholar 

  • Harrison, D.L., Bates, P.J.J., 1991. The Mammals of Arabia. Harrison Zoological. Museum Publications, Sevenoaks, Kent, UK.

    Google Scholar 

  • Ivashkina, V.A., 2006. Abundance and activity of the edible dormouse (Glis glis L.) in the Zhiguli mountains (Rushia Middle Volga region). Pol. J. Ecol. 54, 337–344.

    Google Scholar 

  • Jallageas, M., Assenmacher, I., 1983. Annual plasma testosterone and thyroxine cycles in relation to hibernation in the edible dormouse Glis glis. Gen. Comp. Endocrinol. 50, 452–462.

    Article  CAS  Google Scholar 

  • Jallageas, M., Assenmacher, I., 1984. External factors controlling annual testosterone and thyroxine cycles in the edible dormice Glis glis. Comp. Biochem. Physiol. A Comp. Physiol. 77, 161–168.

    Article  CAS  Google Scholar 

  • Jallageas, M., Assenmacher, I., 1986. Effects of castration and thyroidectomy on the annual biological cycles of the edible dormouse Glis glis. Gen. Comp. Endocrinol. 63, 301–308.

    Article  CAS  Google Scholar 

  • Jallageas, M., Mas, N., Assenmacher, I., 1989. Further demonstration of the ambient temperature dependence of the annual biological cycles in the edible dormouse, Glis glis. J. Comp. Physiol. B 159, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Janin, H., Besheer, M., 2003. Saudi Arabia: Cultures of the World. Times Books International.

  • Jud, C., Schmutz, I., Hampp, G., Oster, H., Albrecht, U., 2005. A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol. Proc. Online 7, 101–116.

    Article  Google Scholar 

  • Juskaitis, R., 2005. Daily torpor in free-ranging common dormice (Muscardinus avellanarius) in Lithuania. Mamm. Biol. 70, 242–249.

    Article  Google Scholar 

  • Juskaitis, R., 2008. The Common Dormouse Muscardinus avellanarius: Ecology, Population Structure and Dynamics. Institute of Ecology of Vilnius University, Vilnius, Lithuania.

    Google Scholar 

  • Kastenmayer, R.J., Moak, H.B., Jeffress, E.J., Elkins, W.J., 2010. Management and care of African dormice (Graphiurus kelleni). J. Am. Assoc. Lab. Anim. Sci. 49, 173–176.

    CAS  PubMed  PubMed Central  Google Scholar 

  • König, C., 1960. Einflüsse von licht und temperatur auf den winterschlaf des sieben-schläfers Glis . glis (Linnaeus 1766). Z. Morph. Ökol. Tiere 48, 545–575.

    Article  Google Scholar 

  • Meijer, J.H., Rietveld, W.J., 1989. Neurphysiology of the suprachiasmatic circadian pacemaker in rodents. Phyisol. Rev. 69, 671–707.

    CAS  Google Scholar 

  • Montoya, R., Ambid, L., Agid, R., 1979. Torpor induced at any season by suppression of food proteins in a hibernator, the garden dormouse (Eliomys quercinus L.) Comp. Biochem. Physiol. 62 (A), 371–376.

    Google Scholar 

  • Nevo, E., Amir, E., 1964. Geographic variation in reproduction and hibernating patterns of the forest dormouse. J. Mamm. 45, 69–87.

    Article  Google Scholar 

  • Nowak, R.M., 1999. Walker’s Mammals of the World. The John Hopkins University Press, Baltimore, MD.

    Google Scholar 

  • Nowakowski, W.K., 1998. 24-Hour activity in the forest dormouse (Dryomys nitedula). Nat. Croat. 7, 19–29.

    Google Scholar 

  • Ognev, S., 1963. Mammals of U.S.S.R. and Adjacent Countries—Rodent, vol. 5, Israel Program for Scientific Translations, Jerusalem.

    Google Scholar 

  • Okamura, H., Yamaguchi, S., Yagita, K., 2002. Molecular machinery of the circadian clock in mammals. Cell Tissue Res. 309, 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Otsu, R., Kimura, T., 1993. Effects of food availability and ambient temperature on hibernation in the Japanese dormouse, Gliurus japonicus. J. Ethol. 11, 37–42.

    Article  Google Scholar 

  • Pajunen, I., 1984. Ambient temperature dependence of the periodic respiratory pattern during long-term hibernation in the garden dormouse. Eliomys quercinus L. Ann. Zool. Fennici 21, 143–148.

    Google Scholar 

  • Pajunen, I., 1986. Ambient temperature dependence of physiological parameters during long term hibernation in the garden dormouse, Eliomys quercinus. In: Assenmacher, I., Boissin, J. (Eds.), Endocrine regulations as adaptive mechanisms to the environment. Editions du Centre National de la Recherche Scientifique, Paris, pp. 379–383.

    Google Scholar 

  • Panchetti, F., Amori, G., Carpaneto, G.M., Sorace, A., 2004. Activity patterns of the common dormouse (Muscardinus avellanarius) in different Mediteranean ecosystems. J. Zool. Lond. 262, 289–294.

    Article  Google Scholar 

  • Pittendrigh, C.S., Minis, D.H., 1964. The entrainment of circadian oscillations by light ad their role as photoperiodic clocks. Am. Nat. 98, 261–294.

    Article  Google Scholar 

  • Pittendrigh, C.S., Daan, S., 1974. Circadian oscillations in rodents: a systematic increase of their frequency with age. Science 186, 548–550.

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh, C.S., Daan, S., 1976. A functional analysis of circadian pacemakers in nocturnal rodents, VI. Entrainment: pacemaker as a clock. J. Comp. Physiol. 106, 291–331.

    Google Scholar 

  • Pohl, H., 1968. Wirkung der Temperatur auf die mit Licht synchronisierte Aktiv-itätsperiodik bei Warmblütern. Z. Vergl. Physiol. 58, 381–394.

    Article  Google Scholar 

  • Pohl, H., 1987. Circadian pacemaker does not arrest in deep hibernation, evidence for desynchronization from the light cycle. Experimentia 43, 293–294.

    Article  CAS  Google Scholar 

  • Popescu, A., Murariu, D., 2000. Fauna României, Mammalia, Rodentia, vol. XVI, fasc. 2. Editura Academiei Române.

  • Quintero, J.E., Kuhlman, S.J., McMahon, D.G., 2003. The biological clock nucleus: a multiphasic oscillator network regulated by light. J. Neurosci. 23, 8070–8076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Refinetti, R., 2006. Circadian Physiology, 2nd ed. CRC Press/Taylor & Francis Group.

  • Reppert, S.M., Weaver, D.R., 2002. Coordination of circadian timing in mammals. Nature 418, 935–941.

    Article  CAS  PubMed  Google Scholar 

  • Rodolfi, G., 1994. Dormice Glis glis activity and hazelnut consumption. Acta Theriol. 39, 215–220.

    Article  Google Scholar 

  • Saint Girons, M.C., Lenkiewicz, Z., 1965. Variations annuelles de l’activite chez Dryomys nitedula (Pallas 1778) en captivite. Folia biologica 13, 23–39.

    CAS  Google Scholar 

  • Skene, D.J., Lockley, S.W., Thapan, K., Arendt, J., 1999. Effects of light on human circadian rhythms. Reprod. Nutr. Dev. 39, 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Stephan, F.K., Zucker, I., 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. U.S.A. 69, 1583–1586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss, M., Sher Shah, M., Shobrak, M., 2008. Rodent trapping in the Saja/Umm Ar-Rimth protected area of Saudi Arabia using two different trap types. Zool. Middle East 43, 31–39.

    Article  Google Scholar 

  • Tavernier, R.J., Largen, A.L., Bult-Ito, A., 2004. Circadian organization of a subarctic rodent, the northern red-backed vole (Clethrionomys rutilus). J. Biol. Rhythms. 19, 238–247.

    Article  PubMed  Google Scholar 

  • Vietinghoff-Riesch, A., 1960. Der Siebenschläfer (Glis glis L.) ‒ Monographien der Wildsäugetiere vol. 14. Gustav Fischer Verlag, Jena, pp. 196.

  • Webb, P.I., Skinner, J.D., 1996. Summertorporin African woodland dormice Graphiurus murinus (Myoxidae: Graphiuridae). J. Comp. Physiol. B. 166, 325‒330.

  • Weber, E.T., Hohn, V.M., 2005. Circadian activity of the spiny mouse, Acomys cahirinus. Physiol. Behav. 8, 27‒433.

  • Weisgerber, D., Redlin, U., Mrosovsky, N., 1997. Lengthening of circadian period in hamsters by novelty-inducing wheel running. Physiol. Behav. 62, 759‒765.

    Article  CAS  Google Scholar 

  • Welsh, D.K., Logothetis, D.E., Meister, M., Reppert, S.M., 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14, 697‒706.

  • Wilson, D., Reeder, D., 2005. Mammal Species of the World. Johns Hopkins University Press, Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Oosthuizen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alagaili, A.N., Mohammed, O.B., Bennett, N.C. et al. Now you see me, now you don’t: The locomotory activity rhythm of the Asian garden dormouse (Eliomys melanurus) from Saudi Arabia. Mamm Biol 79, 195–201 (2014). https://doi.org/10.1016/j.mambio.2013.10.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2013.10.001

Keywords

Navigation