Skip to main content
Log in

Simulating natural light and temperature cycles in the laboratory reveals differential effects on activity/rest rhythm of four Drosophilids

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Recent studies under semi-natural conditions have revealed various unique features of activity/rest rhythms in Drosophilids that differ from those under standard laboratory conditions. An additional afternoon peak (A-peak) has been reported for Drosophila melanogaster and another species D. malerkotliana while D. ananassae exhibited mostly unimodal diurnal activity. To tease apart the role of light and temperature in mediating these species-specific behaviours of four Drosophilid species D. melanogaster, D. malerkotliana, D. ananassae, and Zaprionus indianus we simulated gradual natural light and/or temperature cycles conditions in laboratory. The pattern observed under semi-natural conditions could be reproduced in the laboratory for all the species under a variety of simulated conditions. D. melanogaster and D. malerkotliana showed similar patterns where as D. ananassae consistently exhibited predominant morning activity under almost all regimes. Z. indianus showed clearly rhythmic activity mostly when temperature cycles were provided. We find that gradually changing light intensities reaching a sufficiently high peak value can elicit A-peak in D. melanogaster, D. malerkotliana, and D. ananassae even at mild ambient temperature. Furthermore, we show that high mid-day temperature could induce A-peak in all species even under constant light conditions suggesting that this A-peak is likely to be a stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bahn JH, Lee G, Park JH (2009) Comparative analysis of Pdf-mediated circadian behaviors between Drosophila melanogaster and D. virilis. Genetics 181:965–975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Busza A, Murad A, Emery P (2007) Interactions between circadian neurons control temperature synchronization of Drosophila behavior. J Neurosci 27:10722–10733

    Article  PubMed  CAS  Google Scholar 

  • Daan S, Spoelstra K, Albrecht U, Schmutz I, Daan M et al (2011) Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J Biol Rhythms 26:118–129

    Article  PubMed  Google Scholar 

  • De J, Varma V, Saha S, Sheeba V, Sharma VK (2013) Significance of activity peaks in fruit flies, Drosophila melanogaster, under seminatural conditions. Proc Natl Acad Sci USA 110:8984–8989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Edmunds LN (1988) Cellular and molecular bases of biological clocks. Springer, New York

    Google Scholar 

  • Foster RG, Helfrich-Förster C (2001) The regulation of circadian clocks by light in fruitflies and mice. Philos Trans R Soc Lond B Biol Sci 356:1779–1789

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Glaser FT, Stanewsky R (2005) Temperature synchronization of the Drosophila circadian clock. Curr Biol 15:1352–1363

    Article  PubMed  CAS  Google Scholar 

  • Grima B, Chelot E, Xia R, Rouyer F (2004) Morning and evening peaks of activity rely on different clock neurons of the Drosophila brain. Nature 431:869–873

    Article  PubMed  CAS  Google Scholar 

  • Harrisingh MC, Wu Y, Lnenicka GA, Nitabach MN (2007) Intracellular Ca2+ regulates free-running circadian clock oscillation in vivo. J Neurosci 27:12489–12499

    Article  PubMed  CAS  Google Scholar 

  • Helfrich-Förster C (2009) Does the morning and evening oscillator model fit better for flies or mice? J Biol Rhythms 24:259–270

    Article  PubMed  Google Scholar 

  • Kauranen H, Menegazzi P, Costa R, Helfrich-Förster C, Kankainen A et al (2012) Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana. J Biol Rhythms 27:377–387

    Article  PubMed  Google Scholar 

  • Khare PV, Barnabas RJ, Kanojiya M, Kulkarni AD, Joshi DS (2002) Temperature dependent eclosion rhythmicity in the high altitude Himalayan strains of Drosophila ananassae. Chronobiol Int 19:1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Konopka RJ, Pittendrigh C, Orr D (1989) Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J Neurogenet 6:1–10

    Article  PubMed  CAS  Google Scholar 

  • Low KH, Lim C, Ko HW, Edery I (2008) Natural variation in the splice site strength of a clock gene and species-specific thermal adaptation. Neuron 60:1054–1067

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Majercak J, Sidote D, Hardin PE, Edery I (1999) How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron 24:219–230

    Article  PubMed  CAS  Google Scholar 

  • Menegazzi P, Yoshii T, Helfrich-Förster C (2012) Laboratory versus nature: the two sides of the Drosophila circadian clock. J Biol Rhythms 27:433–442

    Article  PubMed  Google Scholar 

  • Menegazzi P, Vanin S, Yoshii T, Rieger D, Hermann C et al (2013) Drosophila clock neurons under natural conditions. J Biol Rhythms 28:3–14

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1954) On temperature independence in the clock system controlling emergence time in Drosophila. Proc Natl Acad Sci USA 40:1018–1029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Prabhakaran PM, Sheeba V (2012) Sympatric Drosophilid species melanogaster and ananassae differ in temporal patterns of activity. J Biol Rhythms 27:365–376

    Article  PubMed  Google Scholar 

  • Prabhakaran PM, Sheeba V (2013) Insights into differential activity patterns of drosophilids under semi-natural conditions. J Exp Biol 216:4691–4702

    Article  PubMed  Google Scholar 

  • Prabhakaran PM, De J, Sheeba V (2013) Natural conditions override differences in emergence rhythm among closely related drosophilids. PLoS ONE 8:e83048

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieger D, Fraunholz C, Popp J, Bichler D, Dittmann R et al (2007) The fruit fly Drosophila melanogaster favors dim light and times its activity peaks to early dawn and late dusk. J Biol Rhythms 22:387–399

    Article  PubMed  Google Scholar 

  • Sayeed O, Benzer S (1996) Behavioral genetics of thermosensation and hygrosensation in Drosophila. Proc Natl Acad Sci USA 93:6079–6084

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Simunovic A, Jaenike J (2006) Adaptive variation among Drosophila species in their circadian rhythms. Evol Ecol Res 8:803–811

    Google Scholar 

  • Stoleru D, Peng Y, Agosto J, Rosbash M (2004) Coupled oscillators control morning and evening locomotor behaviour of Drosophila. Nature 431:862–868

    Article  PubMed  CAS  Google Scholar 

  • Tomioka K, Sakamoto M, Harui Y, Matsumoto N, Matsumoto A (1998) Light and temperature cooperate to regulate the circadian locomotor rhythm of wild type and period mutants of Drosophila melanogaster. J Insect Physiol 44:587–596

    Article  PubMed  CAS  Google Scholar 

  • van der Linde K, Houle D, Spicer GS, Steppan SJ (2010) A supermatrix-based molecular phylogeny of the family Drosophilidae. Genet Res (Camb) 92:25–38

    Article  Google Scholar 

  • Vanin S, Bhutani S, Montelli S, Menegazzi P, Green EW et al (2012) Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484:371–375

    Article  PubMed  CAS  Google Scholar 

  • Yao Z, Shafer OT (2014) The Drosophila circadian clock is a variably coupled network of multiple peptidergic units. Science 343:1516–1520

    Article  PubMed  CAS  Google Scholar 

  • Yoshii T, Heshiki Y, Ibuki-Ishibashi T, Matsumoto A, Tanimura T et al (2005) Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity. Eur J Neurosci 22:1176–1184

    Article  PubMed  Google Scholar 

  • Yoshii T, Fujii K, Tomioka K (2007) Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light. J Biol Rhythms 22:103–114

    Article  PubMed  CAS  Google Scholar 

  • Yoshii T, Vanin S, Costa R, Helfrich-Förster C (2009) Synergic entrainment of Drosophila’s circadian clock by light and temperature. J Biol Rhythms 24:452–464

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for critical comments on an earlier version of the manuscript. We thank Sudeshna Das and Vinod Ilangovan for the collection of flies, Avani Mital and Pawas Singh for help in execution of some of the experiments. We thank Vijay Kumar Sharma and Sheetal Potdar for suggestions and Rajanna and Muniraju for technical assistance. This work was supported by funding from JNCASR, Ramanujan Fellowship (Department of Science and Technology, India) to VS and Council of Scientific and Industrial Research (India) fellowship to PMP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasu Sheeba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhakaran, P.M., Sheeba, V. Simulating natural light and temperature cycles in the laboratory reveals differential effects on activity/rest rhythm of four Drosophilids. J Comp Physiol A 200, 849–862 (2014). https://doi.org/10.1007/s00359-014-0927-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0927-x

Keywords

Navigation