Skip to main content
Log in

Fluctuating asymmetry in populations of British roe deer (Capreolus capreolus) following historical bottlenecks and founder events

  • Short Communication
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The potential impact of population bottlenecks and founder events on genetic diversity and indirect measures of fitness (such as fluctuating asymmetry; FA) has important conservation implications. Here we take advantage of historical events that generated a remnant roe deer (Capreolus capreolus) population in the north of the British Isles that retained diversity, while populations in the south were apparently extirpated during the early mediaeval era. The southern population was later re-established from small founder populations of introduced European roe deer starting in the 19th century. We assess the impact of these events, using the northern remnant population as a reference, based on measures of FA at 16 bilateral cranial traits. Comparing the northern and southern populations we find evidence of differential impact on both the level of FA and the relationship between FA and levels of genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Acevedo, P., Ward, A.I., Real, R., Smith, G.C, 2010. Assessing biogeographical relationships of ecologically related species using favourability functions: a case study on British deer, Divers. Distrib. 16 (4), 1–14.

    Article  Google Scholar 

  • Amos, W., Wilmer, J.W., Fullard, K., Burg, T.M., Croxall, J.P., Bloch, D., Coulson, T., 2001. The influence of parental relatedness on reproductive success, Proc. R. Soc. Lond. Ser. B: Biol. Sci. 268 (1480), 2021–2027.

    Article  CAS  Google Scholar 

  • Baker, K.H., Hoelzel, A.R., 2013. Evolution of population genetic structure of the British roe deer by natural and anthropogenic processes (Capreolus capreolus), Ecol. Evol. 3(1), 89–102.

    Article  PubMed Central  Google Scholar 

  • Britten, H.B., 1996. Meta-analyses of the association between multilocus heterozygosity and fitness, Evolution 50 (6), 2158–2164.

    Article  PubMed  Google Scholar 

  • Coltman, D.W., Bowen, W.D., Wright, J.M., 1998. Birth weight and neonatal survival of harbour seal pups ape positively correlated with genetic variation measured by microsatellites, Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265 (1398), 803–809.

    Article  CAS  Google Scholar 

  • Coltman, D.W., Pilkington, J.G., Smith, J.A., Pemberton, J.M., 1999. Parasite-mediated selection against inbred Soay sheep in a free-living, island population, Evolution 53 (4), 1259–1267.

    PubMed  Google Scholar 

  • Coltman, D.W., Slate, J., 2003. Microsatellite measures of inbreeding: a metaanalysis, Evolution 57 (5), 971–983.

    Article  CAS  PubMed  Google Scholar 

  • Coulson, T., Albon, S., Slate, J., Pemberton, J., 1999. Microsatellite loci reveal sex-dependent responses to inbreeding and outbreeding in red deer calves, Evolution 53 (6), 1951–1960.

    Article  PubMed  Google Scholar 

  • Coulson, T.N., Pemberton, J.M., Albon, S.D., Beaumont, M., Marshall, T.C, Slate, J., Guinness, F.E., Clutton-Brock, T.H., 1998. Microsatellites reveal heterosis in red deer, Proc. R. Soc. Lond. Ser. B: Biol. Sci. 265 (1395), 489–495.

    Article  CAS  Google Scholar 

  • Crnokrak, P., Roff, DA, 1999. Inbreeding depression in the wild, Heredity 83, 260–270.

    Article  PubMed  Google Scholar 

  • Fessehaye, Y., Komen, H., Kezk, M.A., van Arendonk, J.A.M., Bovenhuis, H., 2007. Effects of inbreeding on survival, body weight and fluctuating asymmetry (FA) in Nile tilapia, Oreochromis niloticus. Aquaculture 264 (1–4), 27–35.

  • Gilligan, D.M., Woodworth, L.M., Montgomery, M.E., Nurthen, R.K., Briscoe, DA, Frankham, R., 2000. Can fluctuating asymmetry be used to detect inbreeding and loss of genetic diversity in endangered populations? Anim, Conserv. 3, 97–104.

    Google Scholar 

  • Hartl, G.B., Suchentrunk, F., Willing, R., Petznek, R., 1995. Allozyme heterozygosity and fluctuating asymmetry in the brown hare (Lepus europaeus): a test of the developmental homeostasis hypothesis, Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 350 (1334), 313–323.

    Article  Google Scholar 

  • Heath, D.D., Bryden, CA, Shrimpton, J.M., Iwama, G.K., Kelly, J., Heath, J.W., 2002. Relationships between heterozygosity, allelic distance (d(2)), and reproductive traits in chinook salmon, Oncorhynchus tshawytscha, Can. J. Fish. Aquat. Sci. 59 (1), 77–84.

    Article  Google Scholar 

  • Hedrick, P., Fredrickson, R., Ellegren, H., 2001. Evaluation of d2, a microsatellite measure of inbreeding and outbreeding, in wolves with a known pedigree, Evolution 55 (6), 1256–1260.

    CAS  PubMed  Google Scholar 

  • Hoelzel, A.R., Fleischer, R.C., Campagna, C, Le Boeuf, B.J., Alvord, G., 2002. Impact of a population bottleneck on symmetry and genetic diversity in the northern elephant seal, J. Evol. Biol. 15 (4), 567–575.

    Article  Google Scholar 

  • Hutchison, D.W., Cheverud, J.M., 1995. Fluctuating asymmetry inTamarin (Saginus) cranial morphology – intraspecific and interspecific comparisons between taxa with varting levels of genetic heterozygosity, J. Hered. 86 (4), 280–288.

    Article  CAS  PubMed  Google Scholar 

  • Kark, S., Safriel, U.N., Tabarroni, C, Randi, E., 2001. Relationship between heterozygosity and asymmetry: a test across the distribution range, Heredity 86, 119–127.

    Article  CAS  PubMed  Google Scholar 

  • Karvonen, E., Merilä, J., Rintamaki, P.T., van Dongen, S., 2003. Geography of fluctuating asymmetry in the greenfinch, Carduelis chloris, Oikos 100 (3), 507–516.

    Article  Google Scholar 

  • Klingenberg, C.P., 2003. A developmental perspective on developmental instability: theory, models and mechanisms. In: Polak, M. (Ed.), Developmental instability: Causes and Consequences. Oxford University Press, New York, pp. 14–34.

  • Kruuk, L.E.B., Slate, J., Pemberton, J.M., Clutton-Brock, T.H., 2003. Fluctuating asymmetry in a secondary sexual trait: no associations with individual fitness, environmental stress or inbreeding, and no heritability, J. Evol. Biol. 16 (1), 101–113.

    Article  CAS  PubMed  Google Scholar 

  • Leary, R.F., Allendorf, F.W., Knudsen, K.L., 1983. Developmental stability and enzyme heterozygosity in rainbow-trout, Nature 301 (5895), 71–72.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J.C., 1990. Sources of extraneous variation in the study of meristic characters: the effect of size and of inter-observer variability, Syst. Zool. 39 (1), 31–39.

    Article  Google Scholar 

  • Lens, L., Van Dongen, S., Galbusera, P., Schenck, T., Matthysen, E., Van de, T., Casteele, 2000. Developmental instability and inbreeding in natural bird populations exposed to different levels of habitat disturbance, J. Evol. Biol. 13 (6), 889–896.

    Article  Google Scholar 

  • Lens, L., Van Dongen, S., Matthysen, E., 2002. Fluctuating asymmetry as an early warning system in the critically endangered Taita thrush, Conserv. Biol. 16 (2), 479–487.

    Article  Google Scholar 

  • Lerner, I.M., 1954. Genetic Homeostasis. Oliver and Boyd, London.

    Google Scholar 

  • Leung, B., Forbes, M.R., Houle, D., 2000. Fluctuating asymmetry as abioindicatorof stress: comparing efficacy of analyses involving multiple traits, Am. Nat. 155(1), 101–115.

    Article  PubMed  Google Scholar 

  • Lovatt, F.M., Hoelzel, A.R., 2011. The impact of population bottlenecks on fluctuating asymmetry and morphological variance in two separate populations of reindeer on the island of South Georgia, Biol. J. Linn. Soc. 102 (4), 798–811.

    Article  Google Scholar 

  • Melis, C, Jedrzejewska, B., Apollonio, M., Barton, KA, Jedrzejewski, W., Linnell, J.D.C., Kojola, I., Kusak, J., Adamic, M., Ciuti, S., Delehan, I., Dykyy, I., Krapinec, K., Mat-tioli, L., Sagaydak, A., Samchuk, N., Schmidt, K., Shkvyrya, M., Sidorovich, V.E., Zawadzka, B., Zhyla, S., 2009. Predation has a greater impact in less productive environments: variation in roe deer, Capreolus capreolus, population density across Europe, Global Ecol. Biogeogr. 18 (6), 724–734.

    Article  Google Scholar 

  • Merilä, J., Björklund, M., 1995. Fluctuating asymmetry and measurement error, Syst. Biol. 44 (1), 97–101.

    Article  Google Scholar 

  • Mitton, J.B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural- populations, Nature 273 (5664), 661–662.

    Article  CAS  PubMed  Google Scholar 

  • Mitton, J.B., 1993. Enzyme heterozygosity, metabolism, and developmental stability. Genetica 89 (1–3), 47–65.

  • Møller, A.P., Swaddle, J.P., 1997. Asymmetry, Developmental Stability, and Evolution. Oxford University Press, Oxford.

    Google Scholar 

  • Newman, D., Pilson, D., 1997. Increased probability of extinction due to decreased genetic effective population size: experimental populations of Clarkiapulchella, Evolution 51 (2), 354–362.

    Article  PubMed  Google Scholar 

  • Palmer, A.R., 1994. Fluctuating Asymmetry Analyses – A Primer. Kluwer, Dordrecht, Netherlands.

    Book  Google Scholar 

  • Palmer, A.R., Strobeck, C, 1986. Fluctuating asymmetry – measurement, analysis, patterns, Annu. Rev. Ecol. Syst. 17, 391–421.

    Article  Google Scholar 

  • Palmer, A.R., Strobeck, C, 1997. Fluctuating asymmetry and developmental stability: heritability of observable variation vs, heritability of inferred cause. J. Evol. Biol. 10 (1), 39–49.

    Article  Google Scholar 

  • Palmer, A.R., Strobeck, C, 2003. Fluctuating asymmetry analyses revisited. In: Polak, M. (Ed.), Developmental Instability: Causes and Consequences. Oxford University Press, Oxford, p. 279e319.

  • Pelabon, C, van Breukelen, L., 1998. Asymmetry in antler size in roe deer (Capreolus capreolus): an index of individual and population conditions. Oecologia 116 (1–2), 1–8.

  • Pemberton, J.M., Coltman, D.W., Coulson, T.N., Slate, J., 1999. Using microsatellites to measure the fitness consequences of inbreeding and outbreeding. In: Schlot-terer, G.a. (Ed.), Microsatellites, Evolution and Application. Oxford University Press, Oxford.

  • Prior, R., 1995. The Roe Deer—Conservation of a Native Species. Swan-Hill Press, Shrewsbury.

    Google Scholar 

  • Rasmuson, M., 2002. Fluctuating asymmetry – indicator of what? Hereditas 136(3), 177–183.

  • Ross-Gillespie, A., O’Riain, M.J., Keller, L.F., 2007. Viral epizootic reveals inbreeding depression in a habitually inbreeding mammal, Evolution 61 (9), 2268–2273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., Hanski, I., 1998. Inbreeding and extinction in a butterfly metapopulation. Nature 392 (6675), 491–494.

  • Siikamaki, P., Lammi, A., 1998. Fluctuating asymmetry in central and marginal populations of Lychnis viscaria in relation to genetic and environmental factors, Evolution 52 (5), 1285–1292.

    Article  PubMed  Google Scholar 

  • Slate, J., Kruuk, L.E.B., Marshall, T.C, Pemberton, J.M., Clutton-Brock, T.H., 2000. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus), Proc. R. Soc. Lond. Ser. B: Biol. Sci. 267 (1453), 1657–1662.

    Article  CAS  Google Scholar 

  • Slate, J., Pemberton, J.M., 2002. Comparing molecular measures for detecting inbreeding depression, J. Evol. Biol. 15 (1), 20–31.

    Article  Google Scholar 

  • Sokolov, V.E., Gromov, V.S., Benenson, I.E., 1985. Multidimesional statistical analysis of morphometric characteristics of skulls of the various geographical roe deer population, Dokl. Akad. Nauk SSSR 282 (2), 501–503.

    Google Scholar 

  • Suchentrunk, F., 1993. Variability of minor tooth traits and allozymic diversity in brown hare Lepus europaeus populations, Acta Theriol. (Warsz.) 38, 59–69.

    Article  Google Scholar 

  • Tsitrone, A., Rousset, F., David, P., 2001. Heterosis, marker mutational processes and population inbreeding history, Genetics 159 (4), 1845–1859.

    CAS  PubMed  PubMed Central  Google Scholar 

  • VanValen, L., 1962. A study of fluctuating asymmetry. Evolution 16(2), 125.

  • Vangestel, C, Mergeay, J., Dawson, DA, Vandomme, V., Lens, L., 2011. Developmental stability covaries with genome-wide and single-locus heterozygosity in house sparrows. PLoS One 6 (7).

  • Vollestad, L.A., Hindar, K., Møller, A.P., 1999. A meta-analysis of fluctuating asymmetry in relation to heterozygosity, Heredity 83, 206–218.

    Article  PubMed  Google Scholar 

  • White, TA, Searle, J.B., 2008. Mandible asymmetry and genetic diversity in island populations of the common shrew, Sorex araneus, J. Evol. Biol. 21 (2), 636–641.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, G.K., 1964. The Deer of Great Britain and Ireland. Routledge & Kegan Paul, London.

    Google Scholar 

  • Zachos, F.E., Hartl, G.B., Suchentrunk, F., 2007. Fluctuating asymmetry and genetic variability in the roe deer (Capreolus capreolus): a test of the developmental stability hypothesis in mammals using neutral molecular markers, Heredity 98 (6), 392–400.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rus Hoelzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, K.H., Hoelzel, A.R. Fluctuating asymmetry in populations of British roe deer (Capreolus capreolus) following historical bottlenecks and founder events. Mamm Biol 78, 387–391 (2013). https://doi.org/10.1016/j.mambio.2013.02.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2013.02.001

Keywords

Navigation