Skip to main content

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 2))

Abstract

The developmental stability of an organism is reflected in its ability to produce an ‘ideal’ form under a particular set of conditions (Zakharov, 1992). The lower its stability, the greater the likelihood it will depart from this ‘ideal’ form. Ideal forms are rarely known a priori. However, bilateral structures in bilaterally symmetrical organisms offer a precise ideal, perfect symmetry, against which departures may be compared (Palmer & Strobeck, 1986). Thus they provide a very convenient method for assessing deviations from the norm, and studying the factors that might influence such deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angus, R. A., 1982. Quantifying fluctuating asymmetry: not all methods are equivalent. Growth 46: 337–342.

    Google Scholar 

  • Angus, R. A. & R. H. Schultz, 1983. Meristic variation in homozygous and heterozygous fish. Copeia 1983: 287–299.

    Article  Google Scholar 

  • Bader, R. S., 1965. Fluctuating asymmetry in the dentition of the house mouse. Growth 29: 291–300.

    PubMed  CAS  Google Scholar 

  • Biémont, C., 1983. Homeostasis, enzymatic heterozygosity and inbreeding depression in natural populations of Drosophila melanogaster. Genetica 61: 179–189.

    Article  Google Scholar 

  • Brown, N. A. & L. Wolpert, 1990. The development of handedness in left-right asymmetry. Development 109: 1–9.

    PubMed  CAS  Google Scholar 

  • Chang, K. S. F., F. K. Hsu, S. T. Chan & B. Chan, 1960. Scrotal asymmetry and handedness. J. Anat. 94: 543–548.

    PubMed  CAS  Google Scholar 

  • Clarke, G. M. & J. A. McKenzie, 1987. Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection. Nature 325: 345–346.

    Article  CAS  Google Scholar 

  • Conover, W. J., M. E. Johnson & M. M. Johnson, 1981. A comparative study of tests for homogeneity of variances with applications to the Outer Continental Shelf Bidding data. Technometrics 23: 351–361.

    Article  Google Scholar 

  • Graham, J. H., D. C. Freeman & J. M. Emlen, 1993. Antisymmetry,directional asymmetry, and chaotic morphogenesis. Genetica (this volume).

    Google Scholar 

  • Jagoe, C. H. & T. A. Haines, 1985. Fluctuating asymmetry in fishes inhabiting acidified and unacidified lakes. Can. J. Zool. 63: 130–138.

    Article  CAS  Google Scholar 

  • Kendall, M. G. & A. Stuart, 1951. The Advanced Theory of Statistics. Hafner, London.

    Google Scholar 

  • Lande, R., 1977. On comparing coefficients of variation. Syst. Zool. 26: 214–217.

    Article  Google Scholar 

  • Leamy, L., 1993. Morphological integration of fluctuating asymmetry in the mouse mandible. Genetica (this volume).

    Google Scholar 

  • Leary, R. F. & F. W. Allendorf, 1989. Fluctuating asymmetry as an indicator of stress in conservation biology. Trends Ecol. Evol. 4: 214–217.

    Article  PubMed  CAS  Google Scholar 

  • Leary, R. F., F. W. Allendorf & R. L. Knudson, 1985a. Developmental instability and high meristic counts in interspecific hybrids of salmonid fishes. Evolution 39: 1318–1326.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & R. L. Knudson, 1992. Genetic, environmental, and developmental causes of meristic variation in rainbow trout. Acta Zool. Fenn. 191: 79–95.

    Google Scholar 

  • Leary, R. F., F. W. Allendorf, R. L. Knudson & G. H. Thorgaard,1985b. Heterozygosity and developmental stability in gynogenetic diploid and triploid rainbow trout. Heredity 54: 219–225.

    Article  PubMed  Google Scholar 

  • Lehmann, E. L., 1959. Testing Statistical Hypotheses. Wiley, New York. 369.

    Google Scholar 

  • Mather, K., 1953. Genetical control of stability in development. Heredity 7: 297–336.

    Article  Google Scholar 

  • McKenzie, J. A. & K. O’Farrell, 1993. Modification of developmental stability and fitness: Malathion-resistance in the Australian sheep blowfly, Lucilia cuprina. Genetica (this volume).

    Google Scholar 

  • Møller, A. P., 1991. Sexual ornament size and the cost of fluctuating asymmetry. Proc. Roy. Soc. Lond. B 243: 59–62.

    Article  Google Scholar 

  • Møller, A. P., 1992. Female swallow preference for symmetrical male sexual ornaments. Nature 357: 238–240.

    Article  PubMed  Google Scholar 

  • Møller, A. P., 1994. Sexual selection in the barn swallow (Hirundo rustica). IV. Patterns of fluctuating asymmetry and selection against asymmetry. Evolution 48: (in press).

    Google Scholar 

  • Palmer, A. R. & C. Strobeck, 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. Syst. 17: 391–421.

    Article  Google Scholar 

  • Palmer, A. R. & C. Strobeck, 1992. Fluctuating asymmetry as a measure of developmental stability: Implications of nonnormal distributions and power of statistical tests. Acta Zool. Fenn. 191: 57–72.

    Google Scholar 

  • Palmer, A. R., C. Strobeck & A. K. Chippindale, 1993. Bilateral variation and the evolutionary origin of macroscopic asymmetries.Genetica (this volume).

    Google Scholar 

  • Parsons, P. A., 1990. Fluctuating asymmetry: An epigenetic measure of stress. Biol. Rev. 65: 131–145.

    Article  PubMed  CAS  Google Scholar 

  • Quattro, J. M. & R. C. Vrijenhoek, 1989. Fitness differences among remnant populations of the endangered Sonoran topminnow. Science 245: 976–978.

    Article  PubMed  CAS  Google Scholar 

  • Rice, W. R., 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.

    Article  Google Scholar 

  • Scharloo, W., 1991. Canalization: genetic and developmental aspects. Ann. Rev. Ecol. Syst. 22: 65–93.

    Article  Google Scholar 

  • Shapiro, S. S., M. B. Wilk & H. J. Chen, 1968. A comparative study of various tests for normality. J. Amer. Stat. Assoc. 63: 1342–1372.

    Article  Google Scholar 

  • Smith, B. H., S. M. Garn & P. E. Cole, 1982. Problems of sampling and inference in the study of fluctuating dental asymmetry. Amer. J. Phys. Anth. 58: 281–289.

    Article  CAS  Google Scholar 

  • Sokal, R. R. & J. F. Rohlf, 1981. Biometry. Freeman, San Francisco, CA. 859.

    Google Scholar 

  • Soulé, M. E., 1967. Phenetics of natural populations. II. Asymmetry and evolution in a lizard. Amer. Nat. 101: 141–160.

    Article  Google Scholar 

  • Strawn, K., 1961. A comparison of meristic means and variances of wild and laboratory-raised samples of the fishes, Etheostoma grahami and E. lepidum (Percidae). Texas J. Sci. 13: 127–159.

    Google Scholar 

  • Swain, D. P., 1987. A problem with the use of meristic characters to estimate developmental stability. Amer. Nat. 129: 761–768.

    Article  Google Scholar 

  • Taning, A., 1952. Experimental study of meristic characters in fishes. Biol. Rev. 27: 169–193.

    Article  Google Scholar 

  • Thornhill, R., 1991. Female preference for the pheromone of males with low fluctuating asymmetry in the Japanese scorpionfly (Panorpa japonica: Mecoptera). Behav. Ecol. 3: 277–283.

    Article  Google Scholar 

  • Thornhill, R., 1992. Fluctuating asymmetry, interspecific aggression and male mating tactics in 2 species of Japanese scorpionflies. Behav. Ecol. Sociobiol. 30: 357–363.

    Article  Google Scholar 

  • Van Valen, L., 1962. A study of fluctuating asymmetry. Evolution 16: 125–142.

    Article  Google Scholar 

  • Van Valen, L., 1978. The statistics of variation. Evol. Theory 4: 33–43.

    Google Scholar 

  • Waddington, C. H., 1940. Organizers and genes. Cambridge Univ. Pr., Cambridge.

    Google Scholar 

  • Waddington, C. H., 1955. On a case of quantitative variation on either side of the wild type. Zeitschr. Indukt. Abstammun Vererbungslehre 87: 208–228.

    CAS  Google Scholar 

  • Waddington, C. H., 1957. The Strategy of the Genes. George Allen Unwin, London.

    Google Scholar 

  • Zakharov, V. M., 1992. Population phenogenetics: Analysis of developmental stability in natural populations. Acta Zool. Fenn. 191: 7–30.

    Google Scholar 

  • Zakharov, V. M., E. Pankakoski, B. I. Sheftel, A. Peltonen & I. Hanski, 1991. Developmental stability and population dynamics in the common shrew, Sorex-Araneus. Amer. Nat. 138: 797–810.

    Article  Google Scholar 

  • Zhivotovsky, L. A., 1992. A measure of fluctuating asymmetry for a set of characters. Acta Zool. Fenn. 191: 37–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Therese Ann Markow

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Palmer, A.R. (1994). Fluctuating asymmetry analyses: a primer. In: Markow, T.A. (eds) Developmental Instability: Its Origins and Evolutionary Implications. Contemporary Issues in Genetics and Evolution, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0830-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0830-0_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4357-1

  • Online ISBN: 978-94-011-0830-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics